Skip to main content

Entanglement Properties

  • Chapter
  • First Online:
Disorder-Free Localization

Part of the book series: Springer Theses ((Springer Theses))

  • 356 Accesses

Abstract

In this chapter we consider the entanglement properties of our model. In particular we discuss how our model fits into the recently proposed notion of a quantum disentangled liquid (QDL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mutual information can also be defined for a bipartite mixed state. For a pure state this definition reduces to the standard von Neumann entropy. See Refs. [9, 10] for more details about entanglement measures.

  2. 2.

    Note that the separation between volume and area law scaling is not clear in our setup. The volume scales with N but so do the boundaries between A and C and between B and C. The boundary between A and B on the other hand is constant. Here we simply consider the scaling with N plus a constant term.

References

  1. Grover T, Fisher MPA (2014) Quantum disentangled liquids. J Stat Mech Theory Exp 2014:P10010. https://doi.org/10.1088/1742-5468/2014/10/P10010

    Article  MathSciNet  Google Scholar 

  2. Schiulaz M, Müller M (2014) Ideal quantum glass transitions: many-body localization without quenched disorder. In: AIP Conference Proceedings, vol 1610, pp 11–23. https://doi.org/10.1063/1.4893505

  3. Yao NY, Laumann CR, Cirac JI, Lukin MD, Moore JE (2016) Quasi-many-body localization in translation-invariant systems. Phys Rev Lett 117:240601. https://doi.org/10.1103/PhysRevLett.117.240601

  4. Veness T, Essler FHL, Fisher MPA (2017a) Quantum disentangled liquid in the half-filled Hubbard model. Phys Rev B 96:1–9. https://doi.org/10.1103/PhysRevB.96.195153

  5. Veness T, Essler FHL, Fisher MPA (2017) Atypical energy eigenstates in the Hubbard chain and quantum disentangled liquids. Philos Trans R Soc A Math Phys Eng Sci 375:20160433. https://doi.org/10.1098/rsta.2016.0433

    Article  ADS  MathSciNet  Google Scholar 

  6. Garrison JR, Mishmash RV, Fisher MPA (2017) Partial breakdown of quantum thermalization in a Hubbard-like model. Phys Rev B 95:054204. https://doi.org/10.1103/PhysRevB.95.054204

  7. Smith A, Knolle J, Moessner R, Kovrizhin DL (2017) Absence of ergodicity without quenched disorder: from quantum disentangled liquids to many-body localization. Phys Rev Lett 119:176601. https://doi.org/10.1103/PhysRevLett.119.176601

  8. Smith A, Knolle J, Kovrizhin DL, Moessner R (2017) Disorder-free localization. Phys Rev Lett 118:266601. https://doi.org/10.1103/PhysRevLett.118.266601

  9. Eisert J (2001) Entanglement in quantum information theory, PhD thesis

    Google Scholar 

  10. Wilde MM (2017) Quantum information theory, 2nd edn. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/9781316809976

  11. Wolf MM, Verstraete F, Hastings MB, Cirac JI (2008) Area Laws in quantum systems: mutual information and correlations. Phys Rev Lett 100:070502. https://doi.org/10.1103/PhysRevLett.100.070502

  12. Schiulaz M, Silva A, Müller M (2015) Dynamics in many-body localized quantum systems without disorder. Phys Rev B 91:184202. https://doi.org/10.1103/PhysRevB.91.184202

  13. Życzkowski K, Horodecki P, Sanpera A, Lewenstein M (1998) Volume of the set of separable states. Phys Rev A 58:883–892. https://doi.org/10.1103/PhysRevA.58.883

    Article  ADS  MathSciNet  Google Scholar 

  14. Vidal G, Werner RF (2002) Computable measure of entanglement. Phys Rev A 65:032314. https://doi.org/10.1103/PhysRevA.65.032314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Smith .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, A. (2019). Entanglement Properties. In: Disorder-Free Localization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-20851-6_4

Download citation

Publish with us

Policies and ethics