Skip to main content

Lateral Lumbar Interbody Fusion for Lumbar Scoliosis

  • Chapter
  • First Online:
The Resident's Guide to Spine Surgery

Abstract

Minimally invasive surgery (MIS) of the spine has become an increasingly important concept in spinal surgery. Within the past decade, a lateral MIS approach to the lumbar spine, also known by the trademarked “extreme lateral interbody fusion (XLIF)” (NuVasive, Inc., San Diego, CA), has gained popularity as a new technique. The purpose of this chapter is to examine the benefits and limitations of minimally invasive spine surgery, with a focus on advantages and disadvantages of XLIF for lumbar scoliosis. The discussion of XLIF includes indications, surgical technique, postoperative care, possible complications, and outcomes. The body of literature regarding XLIF compared to both open and minimally invasive approaches is also examined. Finally, a case study following an XLIF patient is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McAfee PC, Phillips FM, Andersson G, Buvenenadran A, Kim CW, Lauryssen C, et al. Minimally invasive spine surgery. Spine. 2010;35(26S):S273.

    Google Scholar 

  2. Dhall SS, Wang MY, Mummaneni PV. Clinical and radiographic comparison of mini–open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine. 2008;9(6):560–5.

    Article  Google Scholar 

  3. Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg Spine. 2002;97(1):7–12.

    Article  Google Scholar 

  4. Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine. 2002;27(4):432–8.

    Article  Google Scholar 

  5. Jaikumar S, Kim DH, Kam AC. History of minimally invasive spine surgery. Neurosurgery. 2002;51(suppl_2):14.

    Article  Google Scholar 

  6. Khoo LT, Palmer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002;51(suppl_2):181.

    Google Scholar 

  7. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.

    Article  Google Scholar 

  8. Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine. 2009;34(13):1385–9.

    Article  Google Scholar 

  9. Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.

    Article  Google Scholar 

  10. Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.

    Article  Google Scholar 

  11. Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. 2015;22(11):1714–21.

    Article  Google Scholar 

  12. Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB. Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. Clin Spine Surg. 2008;21(7):459–67.

    Google Scholar 

  13. Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28(3):E9.

    Article  Google Scholar 

  14. Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach–related morbidity. Neurosurg Focus. 2011;31(4):E4.

    Article  Google Scholar 

  15. Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20(4):550–6.

    Article  Google Scholar 

  16. Kepler CK. Minimally invasive exposure techniques of the lumbar spine. In: Baron E, Vaccaro A, editors. Operative techniques: spine surgery. 3rd ed. Philadelphia, PA: Elsevier; 2018. p. 387–97.

    Google Scholar 

  17. Beckman JM, Uribe JS. MIS lateral lumbar interbody fusion. In: Steinmetz M, Benzel E, editors. Benzel’s spine surgery. 4th ed. Philadelphia, PA: Elsevier; 2017. p. 673.e1.

    Google Scholar 

  18. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine. 2009;34(12):1330–5.

    Article  Google Scholar 

  19. O’Brien J, Haines C, Dooley ZA, Turner AW, Jackson D. Femoral nerve strain at L4–L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine. 2014;39(1):33–8.

    Article  Google Scholar 

  20. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization: a review. J Neurosurg Spine. 2013;18(3):289–97.

    Article  Google Scholar 

  21. Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26S):S374.

    Google Scholar 

  22. Fogel GR, Parikh RD, Ryu SI, Turner AW. Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation. J Neurosurg Spine. 2014;20(3):291–7.

    Article  Google Scholar 

  23. Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS. Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine. 2012;37(10):819–25.

    Article  Google Scholar 

  24. Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, et al. Biomechanical analysis and review of lateral lumbar fusion constructs. Spine. 2010;35(26S):S367.

    Google Scholar 

  25. Kim CW, Raiszadeh K, Garfin SR. Minimally invasive scoliosis treatment. In: Yue J, Guyer R, Johnson JP, Khoo LT, Hochschuler SH, editors. Comprehensive treatment of the aging spine. Philadelphia, PA: Elsevier Saunders; 2011. p. 396–407.

    Chapter  Google Scholar 

  26. Bach K, Ahmadian A, Deukmedjian A, Uribe JS. Minimally invasive surgical techniques in adult degenerative spinal deformity: a systematic review. Clin Orthop Relat Res. 2014;472(6):1749–61.

    Article  Google Scholar 

  27. Wang MY. Percutaneous iliac screws for minimally invasive spinal deformity surgery. Minim Invasive Surg. 2012;2012:173685.

    PubMed  PubMed Central  Google Scholar 

  28. Baaj AA, Mummaneni PV, Uribe JS, Vaccaro AR, Greenberg MS. 61 minimally invasive lateral retroperitoneal transpsoas interbody fusion. Handbook of spine surgery. 2nd ed. Stuttgart: Georg Thieme Verlag; 2016.

    Google Scholar 

  29. Pimenta L, Coutinho E, Sauri Barraza JC, Oliveira L. Lateral XLIF fusion techniques. In: Yue J, Guyer R, Johnson JP, Khoo LT, Hochschuler SH, editors. Comprehensive treatment of the aging spine. Philadelphia, PA: Elsevier Saunders; 2011 p. 408–12.

    Chapter  Google Scholar 

  30. Sardar ZM, Baron EM, Davis T, Anand N. The transpsoas approach for thoracolumbar interbody fusion. In: Baron E, Vaccaro A, editors. Operative techniques: spine surgery. 3rd ed. Philadelphia, PA: Elsevier; 2018. p. 358–70.

    Google Scholar 

  31. Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38(21):1853–61.

    Article  Google Scholar 

  32. Caputo AM, Michael KW, Chapman TM, Massey GM, Howes CR, Isaacs RE, et al. Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. Sci World J. 2012;2012:680643.

    Article  Google Scholar 

  33. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.

    Article  Google Scholar 

  34. Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35(26S):S337.

    Google Scholar 

  35. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, et al. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine. 2010;35(26S):S311.

    Google Scholar 

  36. Acosta FL Jr, Drazin D, Liu JC. Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery. 2013;73(suppl_1):ons52.

    Google Scholar 

  37. O’Brien JR. Nerve injury in lateral lumbar interbody fusion. Spine. 2017;42:S24.

    Article  Google Scholar 

  38. Dua K, Kepler CK, Huang RC, Marchenko A. Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J. 2010;10(9):e15.

    Article  Google Scholar 

  39. Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine. 2012;37(14):1268–73.

    Article  Google Scholar 

  40. Keith MW, Yoon ST. Complication avoidance in the lateral approach for interbody fusion. Seminars in Spine Surgery. 2013;25(3):182–90.

    Article  Google Scholar 

  41. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.

    Article  Google Scholar 

  42. Sugrue PA, Liu Kim JC. Lateral lumbar interbody fusion. In: Kim DH, Vaccaro AR, Dickman CA, Cho D, Lee S, Kim I, editors. Surgical anatomy and techniques to the spine: Philadelphia, PA: Elsevier Health Sciences; 2013. p. 459–69.

    Google Scholar 

  43. Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976). 2003;28(5):423–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinreb, J.H., Iweala, U., Lee, D., Yu, W., O’Brien, J.R. (2020). Lateral Lumbar Interbody Fusion for Lumbar Scoliosis. In: O'Brien, J., Kalantar, S., Drazin, D., Sandhu, F. (eds) The Resident's Guide to Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-20847-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20847-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20846-2

  • Online ISBN: 978-3-030-20847-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics