Skip to main content

Platelets: Frozen and Freeze-Dried Current Products in Development and Regulatory Licensing Challenges

  • Chapter
  • First Online:
Damage Control Resuscitation

Abstract

Cryopreserved and lyophilized platelets have a long, but limited, history of human use that dates back to the 1950s yet involves a small number of total study subjects (Fig. 9.1). Despite decades of research characterizing the quality and nature of these products, questions remain regarding the relationship between in vitro performance and in vivo function to control bleeding. That said, results to date indicate promising in vivo hemostatic potential in several animal models. Although the data is retrospective and cannot definitively establish causality, human use of cryopreserved platelets in military settings also appears to be associated with benefit. The regulatory pathway for these products, particularly in the case of cryopreserved platelets, has been decades long, and more trials are needed to provide high-quality data to regulatory bodies. These products could be life-saving in settings where other good alternatives are limited or unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Anticoagulant Citrate Dextrose Solution

ADF:

Australian Defense Force

ARC:

Australian Red Cross

BARDA:

Biomedical Advanced Research and Development Authority

BEST:

Biomedical Excellence for Safer Transfusion

CABG:

Coronary artery bypass grafting

CBER:

Center for Biologics Evaluation and Research

CD41a:

Cluster of differentiation 41a (GPIIb/IIIa)

CD42b:

Cluster of differentiation 42b (GPIb)

cGMP:

Current Good Manufacturing Practice

CLIP:

Cryopreserved Platelets Versus Liquid Platelets Trial

CPP:

Cryopreserved platelet product

DARPA:

Defense Advanced Research Projects Agency

DMSO:

Dimethyl sulfoxide

DoD:

Department of Defense

FDA:

Food and Drug Administration

FFP:

Fresh frozen plasma

GPIb:

Glycoprotein Ib

GPIIb/IIIa:

Glycoprotein IIb/IIIa

ICH:

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

LDH:

Lactate dehydrogenase

LSP:

Liquid-stored platelets

LyPt:

Lyophilized platelets

LyPt-P:

Lyophilized platelets stabilized with paraformaldehyde

LyPt-T:

Lyophilized platelets stabilized with trehalose

MTFs:

Medical treatment facilities

NATO:

North Atlantic Treaty Organization

NHP:

Non-human primate

NIH:

National Institutes of Health

NLAF:

Netherlands Armed Forces

NZWR:

New Zealand white rabbits

PAS:

Platelet additive solution

PVC:

Polyvinyl chloride

RT:

Room temperature, 20–24 °C

US:

United States

WB:

Whole blood

References

  1. Brewer DB. Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol. 2006;133(3):251–8.

    Article  PubMed  Google Scholar 

  2. Dimond L. Blood platelets in the treatment of disease. Br Med J. 1914;2(2811):828–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kickler TS. Dr William W. Duke: pioneer in platelet research. JAMA. 2009;301(21):2267–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gardner FH, Howell D, Hirsch EO. Platelet transfusions utilizing plastic equipment. J Lab Clin Med. 1954;43(2):196–207.

    CAS  PubMed  Google Scholar 

  5. Boulton F. Beginner’s luck--the first in vivo demonstration of functioning platelets; William Duke, 1910. Transfus Med. 2012;22(2):80–3.

    Article  CAS  PubMed  Google Scholar 

  6. Hirsch EO, Favre-Gilly J, Dameshek W. Thrombopathic thrombocytopenia; successful transfusion of blood platelets. Blood. 1950;5(6):568–80.

    CAS  PubMed  Google Scholar 

  7. Creveld SV, Paulssen MM, Bartels HL, Vonk R. Transfusions of suspensions of blood platelets in thrombocytopenia and thrombopathia. J Clin Pathol. 1953;6(1):41–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kliman A, Gaydos LA, Schroeder LR, Freireich EJ. Repeated plasmapheresis of blood donors as a source of platelets. Blood. 1961;18:303–9.

    CAS  PubMed  Google Scholar 

  9. Jackson DP, Sorensen DK, Cronkite EP, Bond VP, Fliedner TM. Effectiveness of transfusions of fresh and lyophilized platelets in controlling bleeding due to thrombocytopenia. J Clin Invest. 1959;38:1689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Filip DJ, Aster RH. Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C. J Lab Clin Med. 1978;91(4):618–24.

    CAS  PubMed  Google Scholar 

  11. Murphy S, Gardner FH. Effect of storage temperature on maintenance of platelet viability--deleterious effect of refrigerated storage. N Engl J Med. 1969;280(20):1094–8.

    Article  CAS  PubMed  Google Scholar 

  12. Murphy S, Gardner FH. The effect of temperature on platelet viability. Vox Sang. 1969;17(1):22.

    CAS  PubMed  Google Scholar 

  13. Freireich EJ. Supportive therapy in acute leukemia. CA Cancer J Clin. 1964;14:257–60.

    Article  CAS  PubMed  Google Scholar 

  14. Klein E, Toch R, Farber S, Freeman G, Fiorentino R. Hemostasis in thrombocytopenic bleeding following infusion of stored, frozen platelets. Blood. 1956;11(8):693–9.

    CAS  PubMed  Google Scholar 

  15. Arnold P, Djerassi I, Farber S, Freeman G, Klein E, Toch R. The preparation and clinical administration of lyophilized platelet material to children with acute leukemia and aplastic anemia. J Pediatr. 1956;49(5):517–22.

    Article  CAS  PubMed  Google Scholar 

  16. Stefanini M, Kistner SA. Platelets, platelet factors and platelet substitutes in the management of thrombocytopenic states. Bibl Haematol. 1958;7:378–81.

    CAS  PubMed  Google Scholar 

  17. Murphy S, Gardner FH. Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies. J Clin Invest. 1971;50(2):370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen P, Gardner FH. Platelet preservation. IV. Preservation of human platelet concentrates by controlled slow freezing in a glycerol medium. N Engl J Med. 1966;274(25):1400–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmeister KM, Falet H, Toker A, Barkalow KL, Stossel TP, Hartwig JH. Mechanisms of cold-induced platelet actin assembly. J Biol Chem. 2001;276(27):24751–9.

    Article  CAS  PubMed  Google Scholar 

  20. Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH. Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Physiol. 1996;168(2):305–13.

    Article  CAS  PubMed  Google Scholar 

  21. Tablin F, Wolkers WF, Walker NJ, Oliver AE, Tsvetkova NM, Gousset K, et al. Membrane reorganization during chilling: implications for long-term stabilization of platelets. Cryobiology. 2001;43(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, et al. The clearance mechanism of chilled blood platelets. Cell. 2003;112(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  23. Bode AP. Preclinical testing of lyophilized platelets as a product for transfusion medicine. Transfus Sci. 1995;16(2):183–5.

    Article  CAS  PubMed  Google Scholar 

  24. Cohen P, Gardner FH. Platelet preservation. II. Preservation of canine platelet concentrates by freezing in solutions of glycerol plasma. J Clin Invest. 1962;41:10–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Djerassi I, Roy A. A method for preservation of viable platelets: combined effects of sugars and dimethylsulfoxide. Blood. 1963;22:703–17.

    CAS  PubMed  Google Scholar 

  26. Djerassi I, Roy A, Kim J, Cavins J. Dimethylacetamide, a new cryoprotective agent for platelets. Transfusion. 1971;11(2):72–6.

    Article  CAS  PubMed  Google Scholar 

  27. Davis RB. Ultrastructural characteristics of freeze-dried human blood platelets. Am J Pathol. 1972;68(2):303–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Iossifides I, Geisler P, Eichman MF, Tocantins LM. Preservation of the clot-retracting activity of platelets by freezing in dimethylsulfoxide and plasma. Transfusion. 1963;3:167–72.

    Article  CAS  PubMed  Google Scholar 

  29. Djerassi I, Farber S, Roy A, Cavins J. Preparation and in vivo circulation of human platelets preserved with combined dimethylsulfoxide and dextrose. Transfusion. 1966;6(6):572–6.

    Article  CAS  PubMed  Google Scholar 

  30. Djerassi I, Roy A, Alvarado J. Preservation of morphological integrity and clot retraction activity of human platelets after freezing. Thromb Diath Haemorrh. 1964;11:222–9.

    Article  CAS  PubMed  Google Scholar 

  31. Geisler PH, Iossifides IA, Eichman MF. Preservation of the lactic dehydrogenase activity of platelets by freezing in dimethylsulfoxide and plasma. Blood. 1964;24:761–4.

    CAS  PubMed  Google Scholar 

  32. Spector JI, Skrabut EM, Valeri CR. Oxygen consumption, platelet aggregation and release reactions in platelets freeze-preserved with dimethylsulfoxide. Transfusion. 1977;17(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  33. Pfisterer H, Weber F, Michlmayr G. In vivo survival of platelet concentrates following rapid freezing and thawing. Cryobiology. 1969;5(6):379–84.

    Article  CAS  PubMed  Google Scholar 

  34. Pfisterer H, Michlmayr G, Weber F. In vivo survival of rabbit platelets by rapid freezing and thawing. Blut. 1969;19(6):347–50.

    Article  CAS  PubMed  Google Scholar 

  35. Schiffer CA, Aisner J, Wiernik PH. Frozen autologous platelet transfusion for patients with leukemia. N Engl J Med. 1978;299(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  36. Schiffer CA, Buchholz DH, Aisner J, Wolff JH, Wiernik PH. Frozen autologous platelets in the supportive care of patients with leukemia. Transfusion. 1976;16(4):321–9.

    Article  CAS  PubMed  Google Scholar 

  37. Daly PA, Schiffer CA, Aisner J, Wiernik PH. Successful transfusion of platelets cryopreserved for more than 3 years. Blood. 1979;54(5):1023–7.

    CAS  PubMed  Google Scholar 

  38. Schiffer CA, Aisner J, Wiernik PH. Clinical experience with transfusion of cryopreserved platelets. Br J Haematol. 1976;34(3):377–85.

    Article  CAS  PubMed  Google Scholar 

  39. Schiffer CA, Aisner J, Dutcher JP. Platelet cryopreservation using dimethyl sulfoxide. Ann N Y Acad Sci. 1983;411:161–9.

    Article  CAS  PubMed  Google Scholar 

  40. Dumont LJ, Slichter SJ, Reade MC. Cryopreserved platelets: frozen in a logjam? Transfusion. 2014;54(8):1907–10.

    Article  PubMed  Google Scholar 

  41. Esber EC. FDA MEMO: reduction of the maximum platelet storage period to 5 days in an approved container. https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/OtherRecommendationsforManufacturers/MemorandumtoBloodEstablishments/UCM063013.pdf. FDA; 1986. Available from: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/OtherRecommendationsforManufacturers/MemorandumtoBloodEstablishments/UCM063013.pdf.

  42. Spitalnik SL, Triulzi D, Devine DV, Dzik WH, Eder AF, Gernsheimer T, et al. 2015 proceedings of the National Heart, Lung, and Blood Institute’s state of the science in transfusion medicine symposium. Transfusion. 2015;55(9):2282–90.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mulcahy AW, Kapinos KA, Briscombe B, Uscher-Pines L, Chaturvedi R, Case SR, et al. Toward a sustainable blood supply in the united states: an analysis of the current system and alternatives for the future. Santa Monica: RAND Corporation; 2016. Available from: https://www.rand.org/content/dam/rand/pubs/research_reports/RR1500/RR1575/RAND_RR1575.pdf.

  44. Dunbar NM. Modern solutions and future challenges for platelet inventory management. Transfusion. 2015;55(9):2053–6.

    Article  PubMed  Google Scholar 

  45. Ellingson KD, Sapiano MRP, Haass KA, Savinkina AA, Baker ML, Chung KW, et al. Continued decline in blood collection and transfusion in the United States-2015. Transfusion. 2017;57(Suppl 2):1588–98.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Valeri CR. Blood components in the treatment of acute blood loss: use of freeze-preserved red cells, platelets, and plasma proteins. Anesth Analg. 1975;54(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  47. Valeri CR, Feingold H, Marchionni LD. A simple method for freezing human platelets using 6 percent dimethylsulfoxide and storage at −80 degrees C. Blood. 1974;43(1):131–6.

    CAS  PubMed  Google Scholar 

  48. Valeri CR, Macgregor H, Barnard MR, Summaria L, Michelson AD, Ragno G. In vitro testing of fresh and lyophilized reconstituted human and baboon platelets. Transfusion. 2004;44(10):1505–12.

    Article  CAS  PubMed  Google Scholar 

  49. Valeri CR, MacGregor H, Barnard MR, Summaria L, Michelson AD, Ragno G. Survival of baboon biotin-X-N-hydroxysuccinimide and (111)In-oxine-labelled autologous fresh and lyophilized reconstituted platelets. Vox Sang. 2005;88(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  50. Valeri CR, Feingold H, Melaragno AJ, Vecchione JJ. Cryopreservation of dog platelets with dimethyl sulfoxide: therapeutic effectiveness of cryopreserved platelets in the treatment of thrombocytopenic dogs, and the effect of platelet storage at −80 degrees C. Cryobiology. 1986;23(5):387–94.

    Article  CAS  PubMed  Google Scholar 

  51. Spector JI, Flor WJ, Valeri CR. Ultrastructural alterations and phagocytic function of cryopreserved platelets. Transfusion. 1979;19(3):307–12.

    Article  CAS  PubMed  Google Scholar 

  52. Handin RI, Valeri CR. Improved viability of previously frozen platelets. Blood. 1972;40(4):509–13.

    CAS  PubMed  Google Scholar 

  53. Khuri SF, Healey N, MacGregor H, Barnard MR, Szymanski IO, Birjiniuk V, et al. Comparison of the effects of transfusions of cryopreserved and liquid-preserved platelets on hemostasis and blood loss after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1999;117(1):172–83; discussion 83–4.

    Article  CAS  PubMed  Google Scholar 

  54. Valeri CR, Ragno G, Khuri S. Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at −80 degrees C without postthaw processing. Transfusion. 2005;45(12):1890–8.

    Article  CAS  PubMed  Google Scholar 

  55. Noorman F, van Dongen TT, Plat MJ, Badloe JF, Hess JR, Hoencamp R. Transfusion: −80 degrees C frozen blood products are safe and effective in military casualty care. PLoS One. 2016;11(12):e0168401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hoencamp R, Vermetten E, Tan EC, Putter H, Leenen LP, Hamming JF. Systematic review of the prevalence and characteristics of battle casualties from NATO coalition forces in Iraq and Afghanistan. Injury. 2014;45(7):1028–34.

    Article  PubMed  Google Scholar 

  57. Reade MC, Marks DC, Johnson L, Irving DO, Holley AD. Frozen platelets for rural Australia: the CLIP trial. Anaesth Intensive Care. 2013;41(6):804–5.

    Article  CAS  PubMed  Google Scholar 

  58. Rowe DJ. Frozen platelets for rural Australia-when, if not. Anaesth Intensive Care. 2013;41(4):549–50.

    Article  CAS  PubMed  Google Scholar 

  59. ARC. Frozen Platelets Clinical Trial. https://www.donateblood.com.au/research/frozen-platelets-clinical-trial. Australian Red Cross Blood Service; N/A [Web page briefly describing ARC collaboration with the CLIP Trial]. Available from: https://www.donateblood.com.au/research/frozen-platelets-clinical-trial.

  60. Authorities TCoA. The factors affecting the supply of health services and medical professionals in rural areas. http://www.aph.gov.au/DocumentStore.ashx?id=bdccdbb5-bfcd-4440-ac8a-ee4f8ae8c157. Submission to the Senate Standing Committee on Community Affairs 2011 [cited 2018 5/8/2018]. Available from: http://www.aph.gov.au/DocumentStore.ashx?id=bdccdbb5-bfcd-4440-ac8a-ee4f8ae8c157.

  61. Pidcoke HF, Spinella PC, Ramasubramanian AK, Strandenes G, Hervig T, Ness PM, et al. Refrigerated platelets for the treatment of acute bleeding: a review of the literature and reexamination of current standards. Shock. 2014;41(Suppl 1):51–3.

    Article  PubMed  Google Scholar 

  62. Holley A, Marks DC, Johnson L, Reade MC, Badloe JF, Noorman F. Frozen blood products: clinically effective and potentially ideal for remote Australia. Anaesth Intensive Care. 2013;41(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  63. Johnson L, Reid S, Tan S, Vidovic D, Marks DC. PAS-G supports platelet reconstitution after cryopreservation in the absence of plasma. Transfusion. 2013;53(10):2268–77.

    CAS  PubMed  Google Scholar 

  64. Johnson L, Tan S, Jenkins E, Wood B, Marks DC. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets. Transfusion. 2018;58(4):927–37.

    Article  CAS  PubMed  Google Scholar 

  65. Johnson L, Tan S, Wood B, Davis A, Marks DC. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Transfusion. 2016;56(7):1807–18.

    Article  CAS  PubMed  Google Scholar 

  66. Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion. 2017;57(12):2845–57.

    Article  CAS  PubMed  Google Scholar 

  67. Dumont LJ, Cancelas JA, Dumont DF, Siegel AH, Szczepiorkowski ZM, Rugg N, et al. A randomized controlled trial evaluating recovery and survival of 6% dimethyl sulfoxide-frozen autologous platelets in healthy volunteers. Transfusion. 2013;53(1):128–37.

    Article  CAS  PubMed  Google Scholar 

  68. Cid J, Escolar G, Galan A, Lopez-Vilchez I, Molina P, Diaz-Ricart M, et al. In vitro evaluation of the hemostatic effectiveness of cryopreserved platelets. Transfusion. 2016;56(3):580–6.

    Article  PubMed  Google Scholar 

  69. Collaborative BEST. Platelet radiolabeling procedure. Transfusion. 2006;46(Suppl):59S–66S.

    Google Scholar 

  70. Slichter SJ, Jones M, Ransom J, Gettinger I, Jones MK, Christoffel T, et al. Review of in vivo studies of dimethyl sulfoxide cryopreserved platelets. Transfus Med Rev. 2014;28(4):212–25.

    Article  PubMed  Google Scholar 

  71. Slichter SJ, Dumont L, Cancelas JA, Jones M, Gernsheimer T, Szczepiorkowski ZM, et al. Safety and efficacy of cryopreserved platelets in bleeding thrombocytopenic patients. Transfusion. 2018;58:2129–38. (in press).

    Article  CAS  PubMed  Google Scholar 

  72. Read MS, Reddick RL, Bode AP, Bellinger DA, Nichols TC, Taylor K, et al. Preservation of hemostatic and structural properties of rehydrated lyophilized platelets: potential for long-term storage of dried platelets for transfusion. Proc Natl Acad Sci U S A. 1995;92(2):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bode AP, Read MS, Reddick RL. Activation and adherence of lyophilized human platelets on canine vessel strips in the Baumgartner perfusion chamber. J Lab Clin Med. 1999;133(2):200–11.

    Article  CAS  PubMed  Google Scholar 

  74. Bode AP, Read MS. Lyophilized platelets: continued development. Transfus Sci. 2000;22(1–2):99–105.

    Article  CAS  PubMed  Google Scholar 

  75. Fischer TH, Wolberg AS, Bode AP, Nichols TC. The interaction of factor VIIa with rehydrated, lyophilized platelets. Platelets. 2008;19(3):182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fischer TH, Bode AP, Parker BR, Russell KE, Bender DE, Ramer JK, et al. Primary and secondary hemostatic functionalities of rehydrated, lyophilized platelets. Transfusion. 2006;46(11):1943–50.

    Article  CAS  PubMed  Google Scholar 

  77. Hawksworth JS, Elster EA, Fryer D, Sheppard F, Morthole V, Krishnamurthy G, et al. Evaluation of lyophilized platelets as an infusible hemostatic agent in experimental non-compressible hemorrhage in swine. J Thromb Haemost. 2009;7(10):1663–71.

    Article  CAS  PubMed  Google Scholar 

  78. Davidow EB, Brainard B, Martin LG, Beal MW, Bode A, Ford MJ, et al. Use of fresh platelet concentrate or lyophilized platelets in thrombocytopenic dogs with clinical signs of hemorrhage: a preliminary trial in 37 dogs. J Vet Emerg Crit Care (San Antonio). 2012;22(1):116–25.

    Article  Google Scholar 

  79. Wolkers WF, Walker NJ, Tablin F, Crowe JH. Human platelets loaded with trehalose survive freeze-drying. Cryobiology. 2001;42(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  80. Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–99.

    Article  CAS  PubMed  Google Scholar 

  81. Crowe LM, Crowe JH. Anhydrobiosis: a strategy for survival. Adv Space Res. 1992;12(4):239–47.

    Article  CAS  PubMed  Google Scholar 

  82. Crowe JH. Anhydrobiosis: an unsolved problem. Plant Cell Environ. 2014;37(7):1491–3.

    Article  PubMed  Google Scholar 

  83. Joshi NV, Raftis JB, Lucking AJ, Hunter AH, Millar M, Fitzpatrick M, et al. Lyophilised reconstituted human platelets increase thrombus formation in a clinical ex vivo model of deep arterial injury. Thromb Haemost. 2012;108(1):176–82. https://doi.org/10.1160/TH12-02-0059.

    Article  CAS  PubMed  Google Scholar 

  84. Getz TM, Bode AP, Hale AS, Stanton M, Johnson M, Fitzpatrick GM. Safety evaluation of lyophilized canine platelets in a model of coronary artery bypass graft (CABG). Transfusion. 2017;57(Supplement S3):21A.

    Google Scholar 

  85. Fitzpatrick GM, Cliff R, Tandon N. Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage. Transfusion. 2013;53(Suppl 1):100S–6S.

    Article  PubMed  Google Scholar 

  86. Fitzpatrick GM, Vibhudatta A, Agashe H, Dee J. Trehalose stabilized freeze dried human platelets, thrombosomes, reduce blood loss in thrombocytopenic rabbit ear bleed model by as much as 89.5%. Vox Sang. 2010;99(Suppl 1 P-0452):261.

    Google Scholar 

  87. Jobes D, Wolfe Y, O’Neill D, Calder J, Jones L, Sesok-Pizzini D, et al. Toward a definition of “fresh” whole blood: an in vitro characterization of coagulation properties in refrigerated whole blood for transfusion. Transfusion. 2011;51(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  88. Inaba K, Barmparas G, Rhee P, Branco BC, Fitzpatrick M, Okoye OT, et al. Dried platelets in a swine model of liver injury. Shock. 2014;41(5):429–34.

    Article  PubMed  Google Scholar 

  89. Odom SR, Howell MD, Silva GS, Nielsen VM, Gupta A, Shapiro NI, et al. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg. 2013;74(4):999–1004.

    Article  CAS  PubMed  Google Scholar 

  90. Vostal JG. Efficacy evaluation of current and future platelet transfusion products. J Trauma. 2006;60(6 Suppl):S78–82.

    Article  PubMed  Google Scholar 

  91. Dyer C, Alquist CR, Cole-Sinclair M, Curnow E, Dunbar NM, Estcourt LJ, et al. A multicentred study to validate a consensus bleeding assessment tool developed by the biomedical excellence for safer transfusion collaborative for use in patients with haematological malignancy. Vox Sang. 2018;113(3):251–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Funding for some research studies reported here was from the US Army Medical Research and Materiel Command. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of Defense position, policy, or decision unless so designated by other documentation.

Funding for some research studies reported here was provided in whole or in part with federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201300021C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry J. Dumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pidcoke, H., Kelly, K., Fitzpatrick, G.M., Dumont, L.J. (2020). Platelets: Frozen and Freeze-Dried Current Products in Development and Regulatory Licensing Challenges. In: Spinella, P. (eds) Damage Control Resuscitation. Springer, Cham. https://doi.org/10.1007/978-3-030-20820-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20820-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20819-6

  • Online ISBN: 978-3-030-20820-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics