Skip to main content

Remote Damage Control Resuscitation

  • Chapter
  • First Online:
Book cover Damage Control Resuscitation

Abstract

Care of the traumatically injured patient must begin at the moment of injury. Hemorrhagic shock can develop quickly. Remote damage control resuscitation (RDCR) is the application of damage control resuscitation (DCR) principles of rapid control of bleeding, hypotensive resuscitation, balanced hemostatic resuscitation, avoidance of overuse of crystalloid fluids, prevention of hypothermia, and worsening acidosis, in the prehospital setting. While many of the strategies and interventions are similar to DCR, there are also unique differences that are crucial for trauma providers to familiarize themselves with. Applying therapies in the prehospital phase of resuscitation that have traditionally been associated with static medical treatment facilities requires unique implementation considerations related to resource availability, storage, administration, and transport. It is because of these differences that RDCR must be considered a distinct yet integral part of the practice and research of DCR and receive the attention it deserves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerhardt RT, Berry JA, Blackbourne LH. Analysis of life-saving interventions performed by out-of-hospital combat medical personnel. J Trauma. 2011;71(1 Suppl):S109–13.

    Article  PubMed  Google Scholar 

  2. Committee on Trauma and Committee on Shock, Division of Medical Sciences, National Academy of Sciences, National Research Council. Accidental death and disability: the neglected disease of modern society. Washington, DC: National Academies Press; 1966.

    Google Scholar 

  3. Stone HH, Strom PR, Mullins RJ. Management of the major coagulopathy with onset during laparotomy. Ann Surg. 1983;197(5):532–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rotondo MF, et al. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):375–82; discussion 382–3.

    Article  CAS  PubMed  Google Scholar 

  5. Holcomb JB, Helling TS, Hirshberg A. Military, civilian, and rural application of the damage control philosophy. Mil Med. 2001;166(6):490–3.

    Article  CAS  PubMed  Google Scholar 

  6. Holcomb JB, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.

    Article  PubMed  Google Scholar 

  7. Butler FK. Stop the bleed. Strategies to enhance survival in active shooter and intentional mass casualty events. The Hartford Consensus. A major step forward in translating battlefield trauma care advances to the civilian sector. J Spec Oper Med. 2015;15(4):133–5.

    PubMed  Google Scholar 

  8. Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–22.

    Article  PubMed  Google Scholar 

  9. Crowell JW, Smith EE. Oxygen deficit and irreversible hemorrhagic shock. Am J Phys. 1964;206:313–6.

    Article  CAS  Google Scholar 

  10. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–20.

    Article  CAS  PubMed  Google Scholar 

  11. Bjerkvig CK, et al. “Blood failure” time to view blood as an organ: how oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion. 2016;56(Suppl 2):S182–9.

    Article  CAS  PubMed  Google Scholar 

  12. Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9(5):441–53.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siegel JH, et al. Oxygen debt criteria quantify the effectiveness of early partial resuscitation after hypovolemic hemorrhagic shock. J Trauma. 2003;54(5):862–80; discussion 880.

    Article  PubMed  Google Scholar 

  14. Trunkey DD. Trauma. Accidental and intentional injuries account for more years of life lost in the U.S. than cancer and heart disease. Among the prescribed remedies are improved preventive efforts, speedier surgery and further research. Sci Am. 1983;249(2):28–35.

    Article  CAS  PubMed  Google Scholar 

  15. Demetriades D, et al. Trauma deaths in a mature urban trauma system: is “trimodal” distribution a valid concept? J Am Coll Surg. 2005;201(3):343–8.

    Article  PubMed  Google Scholar 

  16. Bardes JM, et al. The contemporary timing of trauma deaths. J Trauma Acute Care Surg. 2018;84:893–9.

    Article  PubMed  Google Scholar 

  17. Eastridge BJ, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S431–7.

    Article  PubMed  Google Scholar 

  18. Strandenes G, Spinella PC. The Solstrand remote damage control resuscitation symposium. Transfusion. 2013;53(Suppl 1):6S–8S.

    Article  PubMed  Google Scholar 

  19. Hodgetts TJ, Mahoney PF, Kirkman E. Damage control resuscitation. J R Army Med Corps. 2007;153(4):299–300.

    Article  CAS  PubMed  Google Scholar 

  20. Jenkins DH, et al. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation: definitions, current practice, and knowledge gaps. Shock. 2014;41(Suppl 1):3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yazer MH, et al. Use of uncrossmatched erythrocytes in emergency bleeding situations. Anesthesiology. 2018;128(3):650–6.

    Article  PubMed  Google Scholar 

  22. Hudson AJ, et al. Airway and ventilation management strategies for hemorrhagic shock. To tube, or not to tube, that is the question! J Trauma Acute Care Surg. 2018;84(6S Suppl 1):S77–82.

    Article  PubMed  Google Scholar 

  23. Gates RM. Duty : memoirs of a secretary at war. New York: Alfred A. Knopf; 2014. p. x, 618.

    Google Scholar 

  24. White NJ, et al. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. ATLS Subcommittee; American College of Surgeons’ Committee on Trauma; International ATLS Working Group. Advanced trauma life support (ATLS(R)): the ninth edition. J Trauma Acute Care Surg. 2013;74(5):1363–6.

    Google Scholar 

  26. Anonymous A. TCCC updates: tactical combat casualty care guidelines for medical personnel: 3 June 2015. J Spec Oper Med. 2015;15(3):129–47.

    PubMed  Google Scholar 

  27. Bulger EM, et al. An evidence-based prehospital guideline for external hemorrhage control: American College of Surgeons Committee on Trauma. Prehosp Emerg Care. 2014;18(2):163–73.

    Article  PubMed  Google Scholar 

  28. Sims K, et al. Management of external hemorrhage in tactical combat casualty care: the adjunctive use of XStat compressed hemostatic sponges: TCCC guidelines change 15-03. J Spec Oper Med. 2016;16(1):19–28.

    PubMed  Google Scholar 

  29. Kragh JF Jr, et al. Historical review of emergency tourniquet use to stop bleeding. Am J Surg. 2012;203(2):242–52.

    Article  PubMed  Google Scholar 

  30. Teixeira PG, et al. Civilian prehospital tourniquet use is associated with improved survival in patients with peripheral vascular injuries. J Am Coll Surg. 2018;226:769–76.

    Article  PubMed  Google Scholar 

  31. Zietlow JM, et al. Prehospital use of hemostatic bandages and tourniquets: translation from military experience to implementation in civilian trauma care. J Spec Oper Med. 2015;15(2):48–53.

    PubMed  Google Scholar 

  32. Jacobs LM Jr, Joint Committee to Create a National Policy to Enhance Survivability from Intentional Mass Casualty Shooting. The Hartford Consensus IV: a call for increased national resilience. Conn Med. 2016;80(4):239–44.

    PubMed  Google Scholar 

  33. Kheirabadi BS, et al. Physiological consequences of abdominal aortic and junctional tourniquet (AAJT) application to control hemorrhage in a swine model. Shock. 2016;46(3 Suppl 1):160–6.

    Article  PubMed  Google Scholar 

  34. Johnson JE, et al. Safety and effectiveness evidence of SAM(r) junctional tourniquet to control inguinal hemorrhage in a perfused cadaver model. J Spec Oper Med. 2014;14(2):21–5.

    PubMed  Google Scholar 

  35. Klotz JK, et al. First case report of SAM(r) junctional tourniquet use in Afghanistan to control inguinal hemorrhage on the battlefield. J Spec Oper Med. 2014;14(2):1–5.

    PubMed  Google Scholar 

  36. Kotwal RS, Butler FK Jr. Junctional hemorrhage control for tactical combat casualty care. Wilderness Environ Med. 2017;28(2S):S33–8.

    Article  PubMed  Google Scholar 

  37. Rall J, Cox JM, Maddry J. The use of the abdominal aortic and junctional tourniquet during cardiopulmonary resuscitation following traumatic cardiac arrest in swine. Mil Med. 2017;182(9):e2001–5.

    Article  PubMed  Google Scholar 

  38. Croushorn J. Abdominal aortic and junctional tourniquet controls hemorrhage from a gunshot wound of the left groin. J Spec Oper Med. 2014;14(2):6–8.

    PubMed  Google Scholar 

  39. Croushorn J, Thomas G, McCord SR. Abdominal aortic tourniquet controls junctional hemorrhage from a gunshot wound of the axilla. J Spec Oper Med. 2013;13(3):1–4.

    PubMed  Google Scholar 

  40. Shackelford S, et al. The use of pelvic binders in tactical combat casualty care: TCCC guidelines change 1602 7 November 2016. J Spec Oper Med. 2017;17(1):135–47.

    PubMed  Google Scholar 

  41. Cullinane DC, et al. Eastern Association for the Surgery of Trauma practice management guidelines for hemorrhage in pelvic fracture--update and systematic review. J Trauma. 2011;71(6):1850–68.

    PubMed  Google Scholar 

  42. Brenner M, et al. Joint statement from the American College of Surgeons Committee on Trauma (ACS COT) and the American College of Emergency Physicians (ACEP) regarding the clinical use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). Trauma Surg Acute Care Open. 2018;3(1):e000154.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sato R, et al. Resuscitative endovascular balloon occlusion of the aorta performed by emergency physicians for traumatic hemorrhagic shock: a case series from Japanese emergency rooms. Crit Care. 2018;22(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Thabouillot O, et al. How many patients could benefit from REBOA in prehospital care? A retrospective study of patients rescued by the doctors of the Paris fire brigade. J R Army Med Corps. 2018;164:267–70.

    Article  PubMed  Google Scholar 

  45. Rago AP, et al. Self-expanding foam for prehospital treatment of intra-abdominal hemorrhage: 28-day survival and safety. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S127–33.

    Article  CAS  PubMed  Google Scholar 

  46. Connelly CR, Schreiber MA. Endpoints in resuscitation. Curr Opin Crit Care. 2015;21(6):512–9.

    Article  PubMed  Google Scholar 

  47. Butler FK Jr, Blackbourne LH. Battlefield trauma care then and now: a decade of Tactical Combat Casualty Care. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S395–402.

    Article  PubMed  Google Scholar 

  48. Bickell WH, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    Article  CAS  PubMed  Google Scholar 

  49. Morrison CA, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.

    Article  PubMed  Google Scholar 

  50. Ng KF, Lam CC, Chan LC. In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth. 2002;88(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  51. Balogh Z, et al. Secondary abdominal compartment syndrome is an elusive early complication of traumatic shock resuscitation. Am J Surg. 2002;184(6):538–43; discussion 543–4.

    Article  PubMed  Google Scholar 

  52. Robinson BRH, et al. Risk factors for the development of acute respiratory distress syndrome following hemorrhage. Shock. 2018;50:258–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schreiber MA, et al. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma Acute Care Surg. 2015;78(4):687–95; discussion 695–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lewis CT, et al. Prehospital point-of-care lactate following trauma: a systematic review. J Trauma Acute Care Surg. 2016;81(4):748–55.

    Article  CAS  PubMed  Google Scholar 

  55. El Zahran T, El Sayed MJ. Prehospital ultrasound in trauma: a review of current and potential future clinical applications. J Emerg Trauma Shock. 2018;11(1):4–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Beilman GJ, et al. Near-infrared spectroscopy measurement of regional tissue oxyhemoglobin saturation during hemorrhagic shock. Shock. 1999;12(3):196–200.

    Article  CAS  PubMed  Google Scholar 

  57. Cohn SM, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62(1):44–54; discussion 54–5.

    Article  PubMed  Google Scholar 

  58. Khasawneh MA, et al. Low tissue oxygen saturation is associated with requirements for transfusion in the rural trauma population. World J Surg. 2014;38(8):1892–7.

    Article  PubMed  Google Scholar 

  59. Nadler R, et al. The value of noninvasive measurement of the compensatory reserve index in monitoring and triage of patients experiencing minimal blood loss. Shock. 2014;42(2):93–8.

    Article  PubMed  Google Scholar 

  60. Eidstuen SC, et al. When do trauma patients lose temperature? – a prospective observational study. Acta Anaesthesiol Scand. 2018;62(3):384–93.

    Article  CAS  PubMed  Google Scholar 

  61. Bennett BL, Holcomb JB. Battlefield trauma-induced hypothermia: transitioning the preferred method of casualty rewarming. Wilderness Environ Med. 2017;28(2S):S82–9.

    Article  PubMed  Google Scholar 

  62. Martin M, et al. Diagnosis of acid-base derangements and mortality prediction in the trauma intensive care unit: the physiochemical approach. J Trauma. 2005;58(2):238–43.

    Article  PubMed  Google Scholar 

  63. Bulger EM, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    Article  PubMed  Google Scholar 

  64. Kyle T, et al. Ionised calcium levels in major trauma patients who received blood en route to a military medical treatment facility. Emerg Med J. 2018;35(3):176–9.

    Article  PubMed  Google Scholar 

  65. Giancarelli A, et al. Hypocalcemia in trauma patients receiving massive transfusion. J Surg Res. 2016;202(1):182–7.

    Article  CAS  PubMed  Google Scholar 

  66. British Committee for Standards in Haematology, et al. Guidelines on the management of massive blood loss. Br J Haematol. 2006;135(5):634–41.

    Article  Google Scholar 

  67. Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med. 2008;36(7 Suppl):S340–5.

    Article  PubMed  Google Scholar 

  68. Spinella PC, et al. Fresh whole blood transfusions in coalition military, foreign national, and enemy combatant patients during Operation Iraqi Freedom at a U.S. combat support hospital. World J Surg. 2008;32(1):2–6.

    Article  PubMed  Google Scholar 

  69. Chandler MH, et al. The US military experience with fresh whole blood during the conflicts in Iraq and Afghanistan. Semin Cardiothorac Vasc Anesth. 2012;16(3):153–9.

    Article  PubMed  Google Scholar 

  70. Strandenes G, et al. Low titer group O whole blood in emergency situations. Shock. 2014;41(Suppl 1):70–5.

    Article  PubMed  Google Scholar 

  71. Warner N, et al. Military prehospital use of low titer group O whole blood. J Spec Oper Med. 2018;18(1):15–8.

    PubMed  Google Scholar 

  72. Jenkins D, et al. Implementation and execution of civilian remote damage control resuscitation programs. Shock. 2014;41(Suppl 1):84–9.

    Article  PubMed  Google Scholar 

  73. Yazer MH, et al. Initial safety and feasibility of cold-stored uncrossmatched whole blood transfusion in civilian trauma patients. J Trauma Acute Care Surg. 2016;81(1):21–6.

    Article  PubMed  Google Scholar 

  74. Seheult JN, et al. Clinical outcomes among low-titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion. 2018;58:1838–45.

    Article  PubMed  Google Scholar 

  75. Seheult JN, et al. Safety profile of uncrossmatched, cold-stored, low-titer, group O+ whole blood in civilian trauma patients. Transfusion. 2018;58:2280–8.

    Article  CAS  PubMed  Google Scholar 

  76. McGinity AC, et al. Pre-hospital low titer cold stored whole blood: philosophy for ubiquitous utilization of O positive product for emergency use in hemorrhage due to injury. J Trauma Acute Care Surg. 2018;84:S115–9.

    Article  PubMed  Google Scholar 

  77. Zielinski MD, et al. Prehospital blood transfusion programs: capabilities and lessons learned. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S70–8.

    Article  PubMed  Google Scholar 

  78. Stubbs JR, Zielinski MD, Jenkins D. The state of the science of whole blood: lessons learned at Mayo Clinic. Transfusion. 2016;56(Suppl 2):S173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stubbs JR, et al. How we provide thawed plasma for trauma patients. Transfusion. 2015;55(8):1830–7.

    Article  PubMed  Google Scholar 

  80. Thiels CA, et al. Use of unmanned aerial vehicles for medical product transport. Air Med J. 2015;34(2):104–8.

    Article  PubMed  Google Scholar 

  81. Shlaifer A, et al. Prehospital administration of freeze-dried plasma, is it the solution for trauma casualties? J Trauma Acute Care Surg. 2017;83(4):675–82.

    Article  PubMed  Google Scholar 

  82. Sailliol A, et al. The evolving role of lyophilized plasma in remote damage control resuscitation in the French Armed Forces Health Service. Transfusion. 2013;53(Suppl 1):65S–71S.

    Article  CAS  PubMed  Google Scholar 

  83. Glassberg E, et al. Freeze-dried plasma at the point of injury: from concept to doctrine. Shock. 2013;40(6):444–50.

    Article  CAS  PubMed  Google Scholar 

  84. Hernandez MC, et al. Prehospital plasma resuscitation associated with improved neurologic outcomes after traumatic brain injury. J Trauma Acute Care Surg. 2017;83(3):398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sperry JL, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018;379(4):315–26.

    Article  PubMed  Google Scholar 

  86. Arav A, Natan D. Freeze drying (lyophilization) of red blood cells. J Trauma. 2011;70(5 Suppl):S61–4.

    Article  PubMed  Google Scholar 

  87. Crowe JH, et al. Stabilization of membranes in human platelets freeze-dried with trehalose. Chem Phys Lipids. 2003;122(1–2):41–52.

    Article  CAS  PubMed  Google Scholar 

  88. CRASH-2 Trial Collaborators, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  Google Scholar 

  89. Morrison JJ, et al. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  90. El-Menyar A, et al. Efficacy of prehospital administration of tranexamic acid in trauma patients: a meta-analysis of the randomized controlled trials. Am J Emerg Med. 2018;36:1079–87.

    Article  PubMed  Google Scholar 

  91. Nadler R, et al. Tranexamic acid at the point of injury: the Israeli combined civilian and military experience. J Trauma Acute Care Surg. 2014;77(3 Suppl 2):S146–50.

    Article  CAS  PubMed  Google Scholar 

  92. Lipsky AM, et al. Tranexamic acid in the prehospital setting: Israel Defense Forces’ initial experience. Injury. 2014;45(1):66–70.

    Article  PubMed  Google Scholar 

  93. Cannon JW, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017;82(3):605–17.

    Article  PubMed  Google Scholar 

  94. Jehan F, et al. The role of 4-factor prothrombin complex concentrate (4-Pcc) in coagulopathy of trauma: a propensity matched analysis. J Trauma Acute Care Surg. 2018;85:18–24.

    Article  CAS  PubMed  Google Scholar 

  95. Innerhofer P, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017;4(6):e258–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald H. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peschman, J.R., Glassberg, E., Jenkins, D.H. (2020). Remote Damage Control Resuscitation. In: Spinella, P. (eds) Damage Control Resuscitation. Springer, Cham. https://doi.org/10.1007/978-3-030-20820-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20820-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20819-6

  • Online ISBN: 978-3-030-20820-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics