Skip to main content

Variants of Simulated Annealing for Strip Constrained Binary Tomography

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

Abstract

We consider the problem of reconstructing binary images from their row and column sums with prescribed number of strips in each row and column. In a previous paper we compared an exact deterministic and an approximate stochastic method (Simulated Annealing – SA) to solve the problem. We found that the latter one is much more suitable for practical purposes. Since SA is sensitive to the choice of the initial state, in this paper we present different strategies for choosing a starting image, and thus we develop variants of the SA method for strip constrained binary tomography. We evaluate the different approaches on images with varying densities of object pixels.

This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artacho, F.J.A., Borwein, J.M., Tam, M.K.: Recent results on Douglas-Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl. 163(1), 1–30 (2014)

    Article  MathSciNet  Google Scholar 

  2. Balázs, P., Szűcs, J.: Reconstruction of binary images with fixed number of strips. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 11–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_2

    Chapter  Google Scholar 

  3. Batenburg, K.J., Kosters, W.A.: On the difficulty of nonograms. ICGA J. 35(4), 195–205 (2012)

    Article  Google Scholar 

  4. Batenburg, K.J., Kosters, W.A.: Solving nonograms by combining relaxations. Pattern Recognit. 42(8), 1672–1683 (2009)

    Article  Google Scholar 

  5. Berend, D., Pomeranz, D., Rabani, R., Raziel, B.: Nonograms: combinatorial questions and algorithms. Discrete Appl. Math. 169, 30–42 (2014)

    Article  MathSciNet  Google Scholar 

  6. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-8176-4543-4

    Book  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  8. Ortiz-García, E.G., Salcedo-Sanz, S., Leiva-Murillo, J.M., Pérez-Bellido, A.M., Portilla-Figueras, J.A.: Automated generation and visualization of picture-logic puzzles. Comput. Graphics 31(5), 750–760 (2007)

    Article  Google Scholar 

  9. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  Google Scholar 

  10. Ueda, N., Nagao, T.: NP-completeness results for NONOGRAM via parsimonious reductions. preprint (1996)

    Google Scholar 

  11. Wang, W.L., Tang, M.H.: Simulated annealing approach to solve nonogram puzzles with multiple solutions. Procedia Comput. Sci. 36, 541–548 (2014)

    Article  Google Scholar 

  12. Wolter, J.: Survey of paint-by-numbers puzzle solvers (2013). http://webpbn.com/survey/index.html

  13. Wu, I.C., et al.: An efficient approach to solving nonograms. IEEE Trans. Comput. Intell. AI Games 5(3), 251–264 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Balázs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szűcs, J., Balázs, P. (2019). Variants of Simulated Annealing for Strip Constrained Binary Tomography. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics