Skip to main content

Study on Closed-Die Forging in Stainless Steel as Standard ASTM F138 in Grain Size Function

  • Chapter
  • First Online:
Engineering Design Applications II

Abstract

Forging is a bulk deformation process in metal working commonly employed in the manufacture of metallic materials prostheses. Depending on the compressive loads applied to the material, structures (grain sizes) are formed which increase its strength. By forging an ASTM F138 stainless steel, the heating of material in a suitable temperature is of fundamental importance to be formed without the presence of folds arising from the process and as a result we can obtain a proper microstructure. This work aims to define the accurate temperature in relation to the strain rate applied in the hot die forging process. Besides, it is used a closed-die forging in which cavity has different thickness that stimulates the profile of an orthopedic plate. Four ranges of temperature used in the process vary between 1000 and 1200 °C, with a strain rate ranging from 400 to 600 s−1. Results demonstrate that there is a transitional temperature close to 1050 °C, where temperatures of 1000–1040 °C provide satisfactory grain size and temperatures of 1100 and 1200 °C, showed limitations in grain size, greater than those recommended by ASTM F 621.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishida MA (2009) Avaliação Comparativa de Barras Laminadas do Aço AISI 316L com e sem Tratamento Térmico de Solubilização. [Masters thesis (Engineering)] Porto Alegre, Universidade Federal do Rio Grande do Sul

    Google Scholar 

  2. Padilha AF, Guedes LC (1994) Aços Inoxidáveis Austeníticos: Microestrutura e Propriedades. Hemus, São Paulo

    Google Scholar 

  3. Miranda F, Rodrigues D, Nakamoto FY, Frajuca C, Santos GA, Couto AA (2016) Microstructural evolution of composite 8 WC-(Co, Ni): effect of the addition of SiC. Defect Diffus Forum 371:78–85. https://doi.org/10.4028/www.scientific.net/DDF.371.78

    Article  Google Scholar 

  4. Miranda F, Rodrigues D, Nakamoto FY, Frajuca C, Santos GA (2017) The influence of the sintering temperature on the grain growth of tungsten carbide in the composite WC-8Ni. Mater Sci Forum 899:424–430. https://doi.org/10.4028/www.scientific.net/MSF.899.424

    Article  Google Scholar 

  5. Nascimento MS, Frajuca C, Nakamoto FY, Santos GA, Couto AA (2017) Correlação entre variáveis térmicas de solidificação, microestrutura e resistência mecânica da liga Al-10%Si-2%Cu. Materia, Rio de Janeiro 22:e11774. https://doi.org/10.1590/s1517-707620170001.0106

    Article  Google Scholar 

  6. Nascimento MS, Franco ATR, Frajuca C, Nakamoto FY, Santos GA, Couto AA (2018) an experimental study of the solidification thermal parameters influence upon microstructure and mechanical properties of Al-Si-Cu alloys. Mater Res 21(5):e20170864. https://doi.org/10.1590/1980-5373-mr-2017-0864

    Article  Google Scholar 

  7. Santos GA, Goulart PR, Couto AA, Garcia A (2017) Primary dendrite arm spacing effects upon mechanical properties of an Al 3 wt%Cu 1 wt%Li Alloy. In: Andreas O, Holm A (eds) Advanced structured materials, vol 33. 1edn. Singapore: Springer Singapore, pp 215–229, . https://doi.org/10.1007/978-981-10-1602-8_19

  8. Hendler BR (2010) Avaliação do Tamanho de Grão de um Forjado a Quente Via Simulação Numérica. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  9. Tavares LN, Rhary GVO, Gama JLL (2007) Estudo da Cinética de Crescimento de Grão em Metal. In: II CONNEPI—Congresso de Pesquisa e Inovação da Rede Norte Nordeste de Educação Tecnológica, 2007, João Pessoa. II CONNEPI

    Google Scholar 

  10. Nascimento LA (2010) Estudo da Recristalização Dinâmica durante a deformação a quente de um aço ISO 5832-9. [Masters thesis (Physics)] São Luís, Universidade Federal do Maranhão

    Google Scholar 

  11. Balacin O (2018) Simulação física do processamento a quente de materiais metálicos—Universidade Federal de São Carlos. [Cited from: 16 Jun 2018]. Available from: https://www.researchgate.net/profile/Oscar_Balancin/post/Tips_for_performing_a_hot_torsion_test/attachment/59d6297cc49f478072e9c44c/AS%3A272470379040799%401441973408545/download/Simula%C3%A7%C3%A3o+F%C3%ADsica.pdf

  12. Santos GA (2017) The importance of metallic materials as biomaterials. Adv Tissue Eng Regenerative Med 3(I)

    Google Scholar 

  13. Padilha AF, Siciliano Jr F (1996) Encruamento, recristalização, crescimento de grão e textura. Associação Brasileira de Metalurgia e Materiais, 2 ed. São Paulo

    Google Scholar 

  14. Callister Jr. WD (2016) Ciência e Engenharia de Materiais: Uma Introdução, LTC, 9,ed, Rio de Janeiro

    Google Scholar 

  15. Santos GA (2015) Tecnologia dos materiais metálicos—propriedades, estruturas e processos de obtenção, São Paulo, Érica

    Google Scholar 

  16. Camargo R (2008) Verificação da Usinabilidade dos Aços Inoxidáveis Austeníticos através do Processo de Furação. [Masters thesis (Engineering)] Campinas, UNICAMP

    Google Scholar 

  17. Schaeffer L (2006) Introdução ao projeto de ferramentas para forjamento a quente em matriz fechada. Ferramental. N. 9, pp 19–28

    Google Scholar 

  18. Geronimo FHC (2006) Estudo da recristalização dinâmica do aço inoxidável austenítico F138, utilizado em próteses ortopédicas. [Masters thesis (Engineering)] São Carlos UFSCAR

    Google Scholar 

  19. Reed-Hill RE (1982) Princípios de Metalurgia Física. Guanabara Dois, 2 edn, Rio de Janeiro, 1982

    Google Scholar 

  20. Bresciani Filho E, Zavaglia CAC, Button ST, Gomes E, Nery FAC (1997) Conformação Plástica dos Metais. Campinas, Editora da Unicamp, 5 ed

    Google Scholar 

  21. Dieter EG (1976) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

  22. Villares Metals (2003) Aços inoxidáveis para implantes ortopédicos, v. 138

    Google Scholar 

  23. Geronimo FHC, Balancin O (2013) Competição entre recuperação e recristalização dinâmica do aço inoxidável austenítico ASTM F138 utilizado em implantes ortopédicos. Tecnologia Metalurgia, Materiais e Mineração. São Paulo, 10(2), pp 162–169

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank IFSP, IPEN, Wieland Forjados and CAPES for their partial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Augusto Couto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos, G.A. et al. (2020). Study on Closed-Die Forging in Stainless Steel as Standard ASTM F138 in Grain Size Function. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications II. Advanced Structured Materials, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-20801-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20801-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20800-4

  • Online ISBN: 978-3-030-20801-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics