Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

This chapter summarizes the effect of additives for gases and liquids on the enhancement of heat transfer. The heat transfer performance by using additives such as solid particles, metallic nano-sized particles, gas bubbles, suspensions in dilute polymer and surfactant solutions for single-phase liquids and solid and liquid additives for gaseous phase is presented. Also, the additives for boiling, condensation and absorption processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarinia A, Behzadmehr A (2007) Numerical study of laminar mixed convection of a Nanofluid in horizontal curved tubes. Appl Thermal Eng 27:1327–1337

    Article  Google Scholar 

  • Akbari OA, Toghraie D, Karimipour A, Safaei MR, Goodarzi M, Alipour H, Dahari M (2016) Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl Mathemat Comput 290:135–153

    Article  MathSciNet  MATH  Google Scholar 

  • Ali HM, Generous MM, Ahmad F, Irfan M (2017) Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nano-fluids. Appl Therm Eng 113:1146–1151

    Article  Google Scholar 

  • Allen PHG, Cooper P (1987) The potential of electrically enhanced evaporators Third international symposium on the large scale application of heat pumps, Oxford, UK 221–229

    Google Scholar 

  • Ammerman CN, You SM (1996) Determination of the boiling enhancement mechanism caused by surfactant addition to water. J Heat Transf 118:429–435

    Article  Google Scholar 

  • Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AA, Ahmadi GR, Nguyen TK (2017) Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Trans 113:780–795

    Article  Google Scholar 

  • Avila R, Cervantes J (1995) Analysis of the heat transfer coefficient in a turbulent particle pipe flow. Int J Heat Mass Transf 38(11):1923–1932

    Article  MATH  Google Scholar 

  • Babcsán N, Mészáros I, Hegman N (2003) Thermal and electrical conductivity measurements on aluminum foams. Mat Wiss u Werkstofftech 34:391–394

    Article  Google Scholar 

  • Bang IC, Chang SH (2004) Boiling heat transfer performance and phenomena of Al2O3– water Nanofluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419

    Article  Google Scholar 

  • Bartel WJ, Genetti WE (1973) Heat transfer from a horizontal bundle of bare and finned tubes in an air fluidized bed. A!ChE Svmp Ser 69(128):85–92

    Google Scholar 

  • Bergles AE, Scarola LS (1966) Effect of a volatile additive on the critical heat flux for surface boiling of water in tubes. Chem Eng Sci 21:721–723

    Article  Google Scholar 

  • Bhatti MS, Savery SW (1975) Augmentation of heat transfer in a laminar external gas boundary layer by the vaporization of suspended droplets. J Heat Transf 97:179–184

    Article  Google Scholar 

  • Boothroyd RG, Haque H (1970) Fully developed heat transfer to a gaseous suspension of particles flowing turbulently in duct of different size. J Mech Eng Sci 12(3):191–200

    Article  Google Scholar 

  • Bonilla CF, Cervi A Jr, Colven TJ Jr, Wang SJ (1953) Heat transfer to slurries in pipe, chalk, and water in turbulent flow. A!ChE Symp Sen 49(5):127–134

    Google Scholar 

  • Cheedarala RK, Park E, Kong K, Park YB, Park HW (2016) Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nano-fluid templates. Int J Heat Mass Transf 100:396–406

    Article  Google Scholar 

  • Chein R, Chuang J (2007) Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci 46(1):57–66

    Article  Google Scholar 

  • Cheol P, Zoubeida O, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TL (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  Google Scholar 

  • Chen JC, Withers JG (1978) An experimental study of heat transfer from plain and finned tubes in fluidized beds. A!ChE Symp Ser 74(174):327–333

    Google Scholar 

  • Chitra SR, Sendhilnathan S, Suresh S (2015) Investigation of heat transfer characteristics of Mgmnni/Diw-based Nanofluids for quenching in industrial applications. J Enhanc Heat Transf 22(1):1

    Article  Google Scholar 

  • Cho YI, Hartnett JP (1982) Non-Newtonian fluids in circular pipe flow. In: Advances in heat transfer, vol 15. Academic, New York, pp 59–141

    Google Scholar 

  • Cho HJ, Kang IS, Kweon YC, Kim MH (1996) Study of the behavior of a bubble attached to a wall in a uniform electric field. Int J Multiphase Flow 22:909–922

    Article  MATH  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. ASME, New York, pp 99–105

    Google Scholar 

  • Choi YJ, Kam DH, Jeong YH (2017) Analysis of CHF enhancement by magnetite nanoparticle deposition in the subcooled flow boiling region. Int J Heat Mass Transf 109:1191–1199

    Article  Google Scholar 

  • Chou CC, Yang YM (1991) Surfactant effects on the temperature profile within the superheated boundary layer and the mechanism of nucleate pool boiling. J Chinese Institute Chem Eng 22(2):71–80

    Google Scholar 

  • Chun MH, Kang MG (1998) Effects of heat exchanger tube parameters on nucleate pool boiling heat transfer. J Heat Transf 120:468–476

    Article  Google Scholar 

  • Ciloglu D (2017) An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transf Eng 38(10):919–930

    Article  Google Scholar 

  • Das S, Putra N, Thiesen P, Roetzel W (2003a) Temperature dependence of thermal conductivity enhancement for Nanofluids. J Heat Transf 125:567–574

    Article  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003b) Pool boiling characteristics of Nano-fluids. Int J Heat Mass Transf 46:851–862

    Article  MATH  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003c) Pool boiling of Nano-fluids on horizontal narrow tubes. Int J Multiphase Flow 29:1237–1247

    Article  MATH  Google Scholar 

  • Depew CA, Reisbig RL (1964) Vapor condensation on a horizontal tube using Teflon to promote dropwise condensation. Ind Eng Chem Process Design Dev. 11: 365-369.

    Article  Google Scholar 

  • Ding Y, Wen D (2005) Particle migration in a flow of nanoparticle suspensions. Powder Technol 149:84–92

    Article  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  • Dizaji S (2014) Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger. Int J Automotive Eng 4(4):902–910

    Google Scholar 

  • Eastman JA, Choi SUS, Li S, Thompson LJ (1997) Enhanced thermal conductivity through the development of Nanofluids. Proc Symp on Nanophase and Nanocomposite materials II, materials research society. 457:3–11

    Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based Nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworths, Oxford

    Google Scholar 

  • Esmaeili M, Sadeghy K, Moghaddami M (2010) Heat transfer enhancement of wavy channels using Al2O3 nanoparticles. J Enhanc Heat Transf 17(2):139–151

    Article  Google Scholar 

  • Filippov GA, Saltanov GA (1982) Steam-liquid media heat-mass transfer and hydrodynamics with surface-active substance additives. Heat Transfer, Vol. 4. Hemisphere Publishing Corporation:443–447

    Google Scholar 

  • Fossa M, Tagliafico LA (1995) Experimental heat transfer of drag-reducing polymer solutions in enhanced surface heat exchangers. Exp Thermal Fluid Sci 10:221–228

    Article  Google Scholar 

  • Funfschilling D, Li HZ (2006) Effects of the injection period on the rise velocity and shape of a bubble in a non-Newtonian fluid. Chem Eng Res Des 84(10):875–883

    Article  Google Scholar 

  • Furchi JCL, Goldstein L, Lombardi G, Mohseni M (1988) Heat transfer coefficients in flowing gas-solid suspensions, A!ChE Symp. Ser., 84(263), 26–30

    Google Scholar 

  • Gabillet C, Colin C, Fabre J (2002) Experimental study of bubble injection in a turbulent boundary layer. Int J Multiphase Flow 28(4):553–578

    Article  MATH  Google Scholar 

  • Gannett HJ Jr, Williams MC (1971) Pool boiling in dilute nonaqueous polymer solutions. Int J Heat Mass Transfer 11:1001–1005

    Article  Google Scholar 

  • Garg NS, Shankar U, Tripathi G (1980) Pool boiling heat transfer from rotating horizontal cylinders. Indian J Technol 18:53–56

    Google Scholar 

  • Grassi W, Testi D (2006) Heat transfer augmentation by ion injection in an annular duct. J Heat Transf Trans ASME 128:283–289

    Article  Google Scholar 

  • Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F (2017) The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 236:254–265

    Article  Google Scholar 

  • Grenwal NS, Saxena SC (1979) Effect of surface ronghness on heat transfer from horizontal immersed tubes in a fluidized bed. J Heat Transf 101:397–403

    Article  Google Scholar 

  • Griffith P (1985) Condensation. Part 2: Dropwise condensation. In Handbook of heat transfer applications. McGraw-Hill, New York, Chap. 11.

    Google Scholar 

  • Gyr A, Bewersdorff HW (1995) Drag reduction of turbulent flows by additives. Kluwer, Netherlands

    Book  MATH  Google Scholar 

  • Ham J, Kim H, Shin Y, Cho H (2017) Experimental investigation of pool boiling characteristics in Al2O3 nanofluid according to surface roughness and concentration. Int J Therm Sci 114:86–97

    Article  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam 1:187–191

    Article  Google Scholar 

  • He Y, Li H, Hu Y, Wang X, Zhu J (2016) Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nano-fluids in a cylindrical vessel. Int J Heat Mass Transf 98:611–615

    Article  Google Scholar 

  • Heidary H, Kermani MJ (2012) Heat transfer enhancement in a channel with block (s) effect and utilizing nano-fluid. Int J Therm Sci 57:163–171

    Article  Google Scholar 

  • Heris SZ, Esfahany MN, Etemad G (2006) Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube. J Enhanc Heat Transf 13(4):279–289

    Article  Google Scholar 

  • Hong K, Hong TK, Yang HS (2006) Thermal conductivity of Fe Nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:31901–1–31901-3

    Article  Google Scholar 

  • Hong T-K, Yang H-S (2005) Nanoparticle-dispersion-dependent thermal conductivity in nanofluids. J Korean Phys Soc 47:321

    Article  Google Scholar 

  • Hu RYZ (1989) Nucleate pool boiling from a horizontal wire in viscoelastic fluid. Ph.D. Thesis, University of Illinois at Chicago, Chicago

    Google Scholar 

  • Ide H, Kimura R, Kawaji M (2007) Optical measurement of void fraction and bubble size distributions in a microchannel. Heat Transf Eng 28(8–9):713–719

    Article  Google Scholar 

  • Irvine TF Jr, Kami J (1987) Non-Newtonian fluid flow and heat transfer. In: Kakat S (ed) Handbook of single-phase convective heat transfer. Wiley-Interscience, New York, p 20

    Google Scholar 

  • Jontz PD, Myers JE (1960) The effect of dynamic surface tension on nucleate boiling coefficients. AIChE J 6:34–38

    Article  Google Scholar 

  • Kamel MS, Lezsovits F, Hussein AM, Mahian O, Wongwises S (2018) Latest developments in boiling critical heat flux using nanofluids: a concise review. Int Commun Heat Mass Transf 98:59–66

    Article  Google Scholar 

  • Katto Y, Kawamura S (1981) Critical heat flux during natural convective boiling on uniformly heated tubes submerged in saturated liquid. JSME B 47(423):2186–2190

    Article  Google Scholar 

  • Kenning DBR, Kao YS (1972) Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int J Heat Mass Transf 15:1709–1718

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing Nanofluids. Int J Heat Mass Transf 46(19):3639–3653

    Article  MATH  Google Scholar 

  • Kim KJ, Kulankara S, Herold K, Miller C (1996) Heat transfer additives for use in high temperature applications. Proc Int Absorp Heat Pump Conf. Montreal, Canada, 1, 89-97.

    Google Scholar 

  • Kim KJ, Lefsaker AM, Razani A, Stone A (2001) The effective use of heat transfer additives for steam condensation. Appl Thermal Eng 21:1863–1874

    Article  Google Scholar 

  • Kitagawa A, Kosuge K, Uchida K, Hagiwara Y (2008) Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Exp Fluids 45(3):473–484

    Article  Google Scholar 

  • Kitagawa A, Kitada K, Hagiwara Y (2010) Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Exp Fluids 49(3):613–622

    Article  Google Scholar 

  • Kofanov VI (1964) Heat transfer and hydraulic resistance in flowing liquid suspensions in piping. Int Chem Eng 4(3):426–430

    Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar Nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

  • Kosky PG (1976) Heat transfer to saturated mist flowing normally to a heated cylinder. Int J Heat Mass Transf 19:539–543

    Article  Google Scholar 

  • Kotchaphakdee P, Williams MC (1970) Enhancement of nucleate pool boiling with polymeric additives. Int J Heat Mass Transf 13:835–848

    Article  Google Scholar 

  • Kowsary F, Heyhat MM (2011) Numerical investigation into the heat transfer enhancement of Nanofluids using a nonhomogeneous model. J Enhanc Heat Transf 18(1):81–90

    Article  Google Scholar 

  • Krause WB, Peters AR (1983) Heat transfer from horizontal serrated finned tubes in an air-fluidized bed of uniformly sized particles. J Heat Transf 105:319–324

    Article  Google Scholar 

  • Kumada M, Chu R, Sato K (2002) Heat transfer enhancement and flow characteristics of drag-reducing surfactant aqueous solutions using the turbulent promoter. Proc 12th Int Heat Transfer Conf 4:129–134

    Google Scholar 

  • Kurosaki Y, Murasaki T (1986) Study on heat transfer mechanism of a gas–solid suspension impinging jet (effect of particle size and thermal properties). Proc 8th Int Heat Transfer Conf 5:2587–2592

    Article  Google Scholar 

  • Kwak SD, Oh Y (2000) A study of bubble behavior and boiling heat transfer enhancement under electric field. Heat Transf Eng 21(4):33–45

    Article  Google Scholar 

  • Kweon YC, Kim MH, Cho HJ, Kang IS (1998) Study on the deformation and departure of a bubble attached to a wall in DC/AC electric fields. Int J Multiphase Flow 24:145–162

    Google Scholar 

  • Lee WK, Vaseleski RC, Metzner AB (1974) Turbulent drag reduction in polymeric solutions containing suspended fibers. AIChE J 20:128–133

    Article  Google Scholar 

  • Li P, Kawaguchi Y, Daisaka H, Yabe A, Hishida K, Maeda M (2001) Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet. J Heat Transf 123:779–789

    Article  Google Scholar 

  • Li Q, Xuan Y (2000) Experimental investigation of transport properties of nanofluids. In: Buxuan W (ed) Heat transfer science & technology. Higher Education Press, Beijing, pp 757–762

    Google Scholar 

  • Li X, Zhu D, Wang X, Wang N, Gao J (2009) Thermal conductivity enhancement for aqueous alumina nano-suspensions in the presence of surfactant. J Enhanc Heat Transf 16(2):93–102

    Article  Google Scholar 

  • Liao L, Liu Z, Bao R (2010) Forced convective flow drag and heat transfer characteristics of CuO nanoparticle suspensions and nanofluids in a small tube. J Enhanc Heat Transf 17(1):45–57

    Article  Google Scholar 

  • Liu T, Cai Z, Lin J (1990) Enhancement of nucleate boiling heat transfer with additives. In: Deng S-J (ed) Heat transfer enhancement and energy conservation. Hemisphere Publishing Corp, Washington, DC, pp 417–424

    Google Scholar 

  • Liu ZH (2001) Enhancement of boiling heat transfer in restricted spaces in compact horizontal tube bundles. Heat Transf–Asian Res 30:394–401

    Article  Google Scholar 

  • Liu Y, Li R, Wang F, Yu H (2004) The effect of electrode polarity on EHD enhancement of boiling heat transfer in a vertical tube. Exp Therm Fluid Sci 29:601–608

    Article  Google Scholar 

  • Lv LC, Liu Z (2008) Boiling heat transfer characteristics in small vertical tubes submerged in saturated nanoparticle suspensions. J Enhanc Heat Transf 15(2):101–112

    Article  Google Scholar 

  • Lv LC, Liu Z (2010) Effects of nanoparticle parameters on thermal performance of the evaporator in a small capillary pumped loop using nanofluid. J Enhanc Heat Transf 17(4):343–352

    Article  Google Scholar 

  • Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer enhancement in forced convection laminar tube flow by using nanofluids. In Proc Int Symp Adv Comput Heat Transf CHT04, April 19-24; Norway

    Google Scholar 

  • Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 7(4):227–233

    Article  Google Scholar 

  • Manglik RM (1998) Pool boiling characteristics of high concentration aqueous surfactant emulsions. Heat Trans 2:449–453

    Google Scholar 

  • Miaw CB (1978) A study of heat transfer to dilute polymer solutions in nucleate pool boiling. Ph.D. Thesis University of Michigan, Ann Arbor

    Google Scholar 

  • Miller AP, Moulton RW (1956) Heat transfer to liquid-solid suspensions in turbulent flow in pipes. Trend Eng:15–21

    Google Scholar 

  • Monde M, Yamaji K (1990) Critical heat flux during natural circulation boiling in a vertical uniformly heated tube submerged in saturated liquid. Int J Heat Transf 2:111–116

    Article  Google Scholar 

  • Morgan AI, Bromley LA, Wilkie CR (1949) Effect of surface tension on heat transfer in boiling. Ind Eng Chem 41:2767–2769

    Article  Google Scholar 

  • Moyls AL, Sabersky RH (1975) Heat transfer to dilute asbestos dispersions in smooth and rough tubes. Lett Heat Mass Trans 2:293–302

    Article  Google Scholar 

  • Murray DB (1994) Local enhancement of heat transfer in a particulate cross flow—I. Heat transfer mechanisms. Int J Multiphase Flow 20(3):493–504

    Article  MathSciNet  MATH  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Ther Sci 44(4):367–373

    Article  Google Scholar 

  • Neve RS, Yan YY (1996) Enhancement of heat exchanger performance using combined electrohydrodynamic and passive methods. Int J Heat Fluid Flow 17:403–409

    Article  Google Scholar 

  • Nishikawa N, Takase H (1979) Effects of particle size and temperature difference on mist flow over a heated circular cylinder. J Heat Transf 101:705–711

    Article  Google Scholar 

  • Nouri NM, Sarreshtehdari A (2009) An experimental study on the effect of air bubble injection on the flow induced rotational hub. Exp Thermal Fluid Sci 33(2):386–392

    Article  Google Scholar 

  • Ogata J, Yabe A (1991) Augmentation of nucleate boiling heat transfer by applying electric fields: EHD behavior of boiling bubble. Proc ASME/JSME Therm Eng 3:41–46

    Google Scholar 

  • Ogata J, Yabe A (1993) Augmentation of boiling heat transfer by utilizing the EHD effect -EHD behaviour of boiling bubbles and heat transfer characteristics. Int J Heat Mass Transf 36:783–791

    Article  Google Scholar 

  • Ökten K, Biyikoglu A (2018a) Effect of air bubble injection on the overall heat transfer coefficient. J Enhanc Heat Transf 25(3):195

    Article  Google Scholar 

  • Ökten K, Biyikoglu A (2018b) Effect of air bubble injection on the overall heat transfer coefficient. J Enhan Heat Transf 25(3)

    Article  Google Scholar 

  • Orr C, Dallavalle JM (1954) Heat transfer properties of liquid-solid suspensions. Chem Eng Prag Symp Ser 50(9):29–45

    Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. ExpHeat Transf 2:151–170

    Google Scholar 

  • Pal SK, Bhattacharyya S (2018) Enhanced heat transfer of Cu-water nanofluid in a channel with wall mounted blunt ribs. J Enhan Heat Trans 25(1)

    Article  Google Scholar 

  • Paper RA, Ohadi MM, Kumar A, Ansari AI (1993) Effect of electrode geometry on EHD-enhanced boiling of R-123/oil mixture. ASHRAE Trans 99:1237–1243

    Google Scholar 

  • Paul DD, Abdel-Khalik SI (1983) Nucleate boiling in drag reducing polymer solutions. J Rheol 27(1):59–76

    Article  Google Scholar 

  • Petrie JC, Freeby JA, Buckham JA (1968) In-bed heat exchangers. Chem Eng Prog 45–51

    Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective conductive model for the thermal conductivity of nanofluids. Trans ASME J Heat Transf 128:588–595

    Article  Google Scholar 

  • Podsushnyy AM, Minyev AN, Statsenko VN, Yakubovskiy YV (1980) Effect of surfactants and of scale formation on boiling heat transfer to sea water. Heat Trans–Soviet Res 12(2):113–114

    Google Scholar 

  • Qi Y, Kawaguchi Y, Lin Z, Ewing M, Christensen RN, Zakin JL (2001) Enhanced heat transfer of drag reducing surfactant solutions with fluted tube-in-tube heat exchanger. Int J Heat Mass Transf 44:1495–1505

    Article  MATH  Google Scholar 

  • Raisee M, Moghaddami M (2008) Numerical investigation of laminar forced convection of nanofluids through circular pipes. J Enhanc Heat Transf 15(4):335–350

    Article  Google Scholar 

  • Rodríguéz-Perez MA, Reglero JA, Lehmhus D, Wichmann M, De Saja JA, Fernández A (2003) The transient plane source technique (TPS) to measure thermal conductivity and its potential as a tool to detect in-homogeneities in metal foams, Proc Int Conf advanced metallic materials, Smolenice, Slovakia, 5–7 November: 253–257

    Google Scholar 

  • Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling liquids. Trans ASME 74:969–979

    Google Scholar 

  • Rosen MJ (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Roy G, Nguyen CT, Lajoie PR (2004) Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlattices Microstructures 35(3):497–511

    Article  Google Scholar 

  • Roy GC, Nguyen CT, Comeau M (2006) Numerical investigation of electronic component cooling enhancement using nanofluids in a radial flow cooling system. J Enhanc Heat Transf 13(2):101–115

    Article  Google Scholar 

  • Rush WF (1968) Field testing of additives. In Symposium on absorption air conditioning, American Gas Association, Chicago, IL

    Google Scholar 

  • Rush W, Wurum J, Perez-Blanco H (1991) A brief review of additives for absorption enhancement, vol 91. Absorp Heat Pump Conf, Tokyo, Japan, pp 183–187

    Google Scholar 

  • Sadek SE (1972) Heat transfer to air-solids suspensions in turbulent flow. Ind Eng Chem Process Design Dev 11:133–135

    Article  Google Scholar 

  • Saffari H, Moosavi R, Gholami E, Nouri NM (2013) The effect of bubble on pressure drop reduction in helical coil. Exp Thermal Fluid Sci 51:251–256

    Article  Google Scholar 

  • Saltanov GA, Kukushkin AN, Solodov AP, Sotskov SA, Jakusheva EV, Chempik E (1986) Surfactant influence on heat transfer at boiling and condensation. Heat Trans. 1986, Hemisphere Publishing Corporation, Washington, DC, Vol. 5, pp. 2245–2250

    Google Scholar 

  • Samaroo R, Kaur N, Itoh K, Lee T, Banerjee S, Kawaji M (2014) Turbulent flow characteristics in an annulus under air bubble injection and subcooled flow boiling conditions. Nucl Eng Des 268:203–214

    Article  Google Scholar 

  • Sandhu H, Gangacharyulu D, Singh MK (2018) Experimental investigations on the cooling performance of micro-channels using alumina nano-fluids with different base fluids. J Enhanc Heat Transf 25(3):283

    Article  Google Scholar 

  • Sarafraz MM, Kiani T, Hormozi F (2016) Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int Commun Heat Mass Transf 70:75–83

    Article  Google Scholar 

  • Sato Y, Deutsch E, Simonin O (1998) Direct numerical simulation of heat transfer by solid particles suspended in homogenous isotropic turbulence. Int J Heat Fluid Flow 19:187–192

    Article  Google Scholar 

  • Sulaiman MZ, Matsuo D, Enoki K, Okawa T (2016) Systematic measurements of heat transfer characteristics in saturated pool boiling of water-based nano-fluids. Int J Heat Mass Transf 102:264–276

    Article  Google Scholar 

  • Tamari M, Nishikawa K (1976) The stirring effect of bubbles upon the heat transfer to liquids. Heat Trans Japanese Res 5(2):31–44

    Google Scholar 

  • Tanasawa I (1978) Dropwise condensation: the way to practical applications. Proc 6th Int Heat Transfer Conf 6:393–405

    Article  Google Scholar 

  • Thomas WC, Sunderland JE (1970) Heat transfer between a plane surface and air containing water droplets. Ind Eng Chem Fundam 9:368–374

    Article  Google Scholar 

  • Thome JR (2017) A review on falling film evaporation. J Enhanc Heat Transf 24:1–6

    Article  Google Scholar 

  • Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58(9):1461–1465

    Article  Google Scholar 

  • Tu JP, Dinh N, Theofanous T (2004) An experimental study of nanofluid boiling heat transfer. Proc. 6th Int. Symp. on Heat Transfer, Beijing China

    Google Scholar 

  • Tzan YL, Yang YM (1990) Experimental study of surfactant effects on pool boiling heat transfer. J Heat Trans 112:207–212

    Article  Google Scholar 

  • Ulicny JC (1984) Nucleate pool boiling in dilute polymer solutions. Ph.D. Thesis, University of Michigan, Ann Arbor

    Google Scholar 

  • van Stralen SJD (1959) Heat transfer to boiling binary liquid mixtures. B1: Chem Eng 4(Patt I):8-17; 4 (Part II), 78–82

    Google Scholar 

  • van Stralen SJD, Cole R (1979) Boiling phenomena: physicochemical and engineering fundamentals. Hemisphere, Washington l:49–50

    Google Scholar 

  • van Wijk, WR, Vos AS, van Stralen SJD (1956) Heat transfer to boiling binary liquid mixtures. Chem. Eng. Sci., 5:68–80

    Google Scholar 

  • Wang C-C, Chen C-K (2002) Combined free and forced convection film condensation on a finite-size horizontal wavy plate. J Heat Trans 124:573–576

    Article  Google Scholar 

  • Wang TAA, Hartnett JP (1992) Influence of surfactants on pool boiling of aqueous polyacrylamide solutions. Warme Stoffubertrag 27:245–248

    Article  Google Scholar 

  • Wang TA A, Hartnett JP (1994) Pool boiling heat transfer from a horizontal wire to aqueous surfactant solutions. Heat Transfer 1994, I Chem. E, UK, 5:177–182

    Google Scholar 

  • Wasekar VM, Manglik RM (2017) Enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhanc Heat Transf 24(1-6)

    Article  Google Scholar 

  • Wasekar VM, Manglik RM (1999) A review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions. J Enhan Heat Transf 6:135–150

    Article  Google Scholar 

  • Wasekar VM, Manglik RM (2000) Pool boiling heat transfer in aqueous solutions of an anionic surfactant. J Heat Transf 122:708–715

    Article  Google Scholar 

  • Watkins RW, Robertson CR, Acrivos A (1976) Entrance region heat transfer in flowing suspensions. Int J Heat Mass Transf 19:693–695

    Article  Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New York

    Google Scholar 

  • Wen DS, Wang BX (2002) Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int J Heat Mass Transf 45:1739–1747

    Article  Google Scholar 

  • Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of Nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188

    Article  Google Scholar 

  • Wen D, Ding Y, Williams RA (2006) Pool boiling heat transfer of aqueous TiO2-based nanofluids. J Enhanc Heat Transf 13(3):231–244

    Article  Google Scholar 

  • Witharana S (2003) Boiling of refrigerants on enhanced surfaces and boiling of Nanofluids. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Wu WT, Yang YM, Maa JR (1995) Enhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives. J Heat Transf 117:526–529

    Article  Google Scholar 

  • Wu W-T, Yang Y-M (1992) Enhanced boiling heat transfer by surfactant additives. In Dhir VK, Bergles AE (eds) Proceedings of the engineering foundation conference on pool and external flow boiling. Santa Barbara, CA, 361–366

    Google Scholar 

  • Wu W-T, Yang Y-M, Maa J-R (1998) Nucleate pool boiling enhancement by means of surfactant additives. Exp Thermal Fluid Sci 18:195–209

    Article  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of Nanofluids. Int J Heat Fluid Flow 21(1):58–64

    Article  Google Scholar 

  • Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conception for heat transfer correlation of nanofluid. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  • Yang YM, Maa JR (1982) Effects of polymer additives on pool boiling phenomena. Letters in Heat Mass Transfer 9:237–244

    Article  Google Scholar 

  • Yang YM, Maa JR (1983) Pool boiling of dilute surfactant solutions. J Heat Trans 105:190–192

    Article  Google Scholar 

  • Yang Y-M, Lin C-Y, Liu M-H, Maa J-R (2002) Lower limit of the possible nucleate pool boiling enhancement by surfactant addition to water. J Enhan Heat Transf 9:153–160

    Article  Google Scholar 

  • Yoo SS (1974) Heat transfer and friction factor for nonnewtonian fluids in turbulent pipe flow. Ph.D Thesis, University of Illinois, Chicago

    Google Scholar 

  • You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in Pool boiling heat transfer. Appl Phys Lett 83:3374–3376

    Article  Google Scholar 

  • Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460

    Article  Google Scholar 

  • Zeinali Heris S, Nasr Esfahany M, Etemad SG (2005) Experimental investigation of convective heat transfer of Nanofluid in circular tube. Int J Heat Fluid Flow 28(2):203–210

    Article  Google Scholar 

  • Zeinali Heris S, Nasr Esfahany M, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water Nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210

    Article  Google Scholar 

  • Zhang S, Luo Z, Wang T, Shou C, Ni M, Cen K (2010) Experimental study on the convective heat transfer of CuO− water Nanofluid in a turbulent flow. J Enhanc Heat Transf 17(2):183–196

    Article  Google Scholar 

  • Zhu DS, Li XF, Wang XJ (2007) Study on preparation and dispersion behavior of Al2O3–H2O nanofluids. Chinese J New Chem Mater 35:45–47

    Google Scholar 

  • Ziegler F, Grossman G (1996) Heat transfer enhancement by additives. Int J Refrig 19:301–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Additives for Gases and Liquids. In: Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20773-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20773-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20772-4

  • Online ISBN: 978-3-030-20773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics