Skip to main content

Electrode Design and Its Placement, Enhancement of Single-Phase Gas and Liquid Flow, Theoretical Studies

  • Chapter
  • First Online:
Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 324 Accesses

Abstract

The electrohydrodynamic technique applied to liquid and gas flows to achieve heat transfer augmentation has been discussed in this chapter. The effect of electrode design and its placement in the flow on heat transfer and pressure drop characteristics is presented in detail. Also, the numerical investigations carried out in this area are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamgholilou A, Esmaeilzadeh E (2012) Experimental investigation on hydrodynamics and heat transfer of fluid flow into channel for cooling of rectangular ribs by passive and EHD active enhancement methods. Exp Thermal Fluid Sci 38:61–73

    Article  Google Scholar 

  • Anisimov S, Pandelidis D (2014) Numerical study of the Maisotsenko cycle heat and mass exchanger. Int J Heat Mass Transf 75:75–96

    Article  Google Scholar 

  • Atten P, Seyed-Yagoobi J (2003) Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry. IEEE Trans Dielectr Electr Insul 10:27–36

    Article  Google Scholar 

  • Bergles AE (1973) Techniques to augment heat transfer. Handbook of heat transfer. A 74–17085 05-33. McGraw-Hill, New York, pp. 10–11

    Google Scholar 

  • Blanford MD, Ohadi MM, Dessiatoun SV (1995) Compound air-side heat transfer enhancement in a cross-flow refrigerant-to-air heat exchanger. ASHRAE Trans 101(Part 2):1049–1054

    Google Scholar 

  • Bologa MK, Didkovesky AB (1977) Enhancement of heat transfer in film condensation of vapour of dielectric fluid by superposition of electric fields. Heat Transfer Soviet Res 9:147–151

    Google Scholar 

  • Bologa MK, Savin IK, Didkovsky AB (1987a) Electric-field-induced enhancement of vapour condensation heat transfer in the presence of a non-condensable gas. Int J Heat Mass Transf 30:1558–1577

    Article  Google Scholar 

  • Bologa MK, Savin IK, Didkovsky AB (1987b) Electric-field-induced enhancement of vapour condensation heat transfer in the presence of a non-condensable gas. Int J Heat Mass Transf 30:1577–1585

    Article  Google Scholar 

  • Bologa MK, Korovkin VP, Savin IK (1995) Mechanism of condensation heat transfer enhancement in an electric field and the role of capillary processes. Int J Heat Mass Transf 38:175–182

    Article  Google Scholar 

  • Bologa MK, Sajin TM, Kozhukhar LA, Klimov SM, Motorin OV (1996) The influence of electric fields on basic processes connected with physical phenomena in two-phase systems. International conference on conduction and breakdown in dielectric liquid 69–72

    Google Scholar 

  • Cao W, Nishiyama Y, Koide S (2003) Electrohydrodynamic drying characteristics of wheat using high voltage electrostatic field. J Food Eng 62(3):209–213

    Article  Google Scholar 

  • Colaço MJ, Dulikravich GS, Martin TJ (2003) Reducing convection effects in solidification by applying magnetic fields having optimized intensity distribution. ASME paper HT2003-47308 Las Vegas NV

    Google Scholar 

  • Colaço MJ, Dennis BH, Dulikravich GS, Martin TJ, Lee SS (2004a) Optimization of intensities, and orientations of magnets controlling melt flow during solidification. Materials Manufacturing Processes 19(4):695–718

    Article  Google Scholar 

  • Colaço MJ, Dulikravich GS, Martin TJ (2004b) Optimization of wall electrodes for electro-hydrodynamic control of natural convection effects during solidification. Mater Manufact Proc 19(4):719–736

    Article  Google Scholar 

  • Cooper P (1992) Practical design aspects of EHD heat transfer enhancement in evaporators. ASHRAE Trans 98(Part 2):445–454

    Google Scholar 

  • Cotton JS, Robinson AJ, Shoukri M, Chang JS (2012) AC voltage induced electro-hydro-dynamic two-phase convective boiling heat transfer in horizontal annular channels. Exp Thermal Fluid Sci 41:31–42

    Article  Google Scholar 

  • Debbissi C, Orfi J, Nassrallah S (2008) Numerical analysis of the evaporation of water by forced convection into humid air in partially wetted vertical plates. J Eng Appl Sci 3(11):811–821

    Google Scholar 

  • Dennis BH, Dulikravich GS (2000) Simulation of Magnetohydrodynamics with conjugate heat transfer. In Onate E, Bugeda G, Suarez B (eds) European congress on computational methods in applied sciences and engineering, Barcelona, Spain

    Google Scholar 

  • Dennis BH, Dulikravich GS (2001) Optimization of magneto-hydrodynamic control of diffuser flows using micro-genetic algorithm and least squares finite elements. J Finite Elements Anal Desn 37(5):349–363

    Article  MATH  Google Scholar 

  • Dennis BH, Dulikravich GS (2002) Magnetic field suppression of melt flow in crystal growth. Int J Heat Fluid Flow 23(3):269–277

    Article  Google Scholar 

  • Didkovsky AB, Bologa MK (1981) Vapour film condensation heat transfer and hydrodynamics under the influence of an electric field. Int J Heat Mass Transf 24:811–819

    Article  Google Scholar 

  • Duan Z, Zhan C, Zhang X, Mustafa M, Zhao X, Alimohammadisagvand B, Hasan A (2012) Indirect evaporative cooling: past, present and future potentials. Renew Sust Energ Rev 16:6823–6850

    Article  Google Scholar 

  • Dulikravich BD, Ahuja V, Lee S (1993) Simulation of electrohydrodynamic enhancement of laminar flow heat transfer. In: Bayazitoglu Y, Arpaci VS (eds) Fundamentals of heat transfer in electromagnetic, electrostatic and acoustic fields., HTD-Vol, vol 248, pp 43–52

    Google Scholar 

  • Dulikravich GS, Colaco MJ (2004) Convective heat transfer control using magnetic and electric fields. J Enhanc Heat Transf 13(2):139–155

    Article  Google Scholar 

  • Eringen AC, Maugin GA (1990) Electrodynamics of continua II—fluids and complex media. Springer, New York

    Book  Google Scholar 

  • Fedoseyev KI, Kansa EJ, Marin C, Ostrogorsky AG (2001) Magnetic field suppression of semiconductor melt flow in crystal growth: comparison of three methods for numerical modeling. Jpn CFD J 9:325–333

    Google Scholar 

  • Feng Y, Seyed-Yagoobi J (2004) Understanding of electrohydrodynamic conduction pumping phenomenon. Phys Fluids 16(7):2432–2441

    Article  MATH  Google Scholar 

  • Fernandez J, Poulter R (1987) Radial mass flow in electrohydrodynamically-enhanced forced heat transfer in tubes. Int J Heat and Mass Transf 30:2125–2136

    Article  Google Scholar 

  • Ghazi R, Saidi MS, Saidi MH (2011) Numerical study of enhanced heat transfer by coupling natural and electro-convections in a horizontal enclosure. J Enhanc Heat Transf 18(6):503–511

    Article  Google Scholar 

  • Grassi W, Testi D, Saputelli M (2005a) EHD enhanced heat transfer in a vertical annulus. Int Commun Heat Mass Transf 32(6):748–757

    Article  Google Scholar 

  • Grassi W, Testi D, Saputelli M (2005b) Heat transfer enhancement in a vertical annulus by electrophoretic forces acting on a dielectric liquid. Int J Therm Sci 44(11):1072–1077

    Article  Google Scholar 

  • Grassi W, Testi D, Della Vista D (2007) Optimal working fluid and electrode configuration for EHD-enhanced single-phase heat transfer. J Enhanc Heat Transf 14(2):161–173

    Article  Google Scholar 

  • Hasegawa M, Yabe A, Nariai H (1999) Turbulent generation and mechanism analysis of forced convection heat transfer enhancement by applying electric fields in the restricted region near the wall. In: Proc. 5th ASMEIJSME thermal Eng. Joint Conj. paper ATJE99-6380

    Google Scholar 

  • Ishiguro H, Nagata S, Yabe A, Nariai (1991) Augmentation of forced-convection heat transfer by applying electric fields to disturb flow near a wall. In B-X Wang, (ed) Heat transfer science and technology. Hemisphere, New York, 25–31

    Google Scholar 

  • Jalaal M, Khorshidi B, Esmaeilzadeh E (2013) Electro-hydro-dynamic (EHD) mixing of two miscible dielectric liquids. Chem Eng J 219:118–123

    Article  Google Scholar 

  • Jeong SI, Seyed-Yagoobi J (2004) Fluid circulation in an enclosure generated by electrohydrodynamic conduction phenomenon. IEEE Trans Dielectr Electr Insul 11(5):899

    Article  Google Scholar 

  • Jia-Xiang Y, Li-Jian D, Yang H (1996) An experimental study of EHD coupled heat transfer. IEEE 1:348–351

    Google Scholar 

  • Jones TB (1978) Electohydrodynamically enhanced heat transfer in liquids—a review. Adv Enhanced Heat Transfer 14:107–148

    Article  Google Scholar 

  • Kasayapanand N, Kiatsiriroat T (2005) EHD enhanced heat transfer in wavy channel 809–821

    Article  Google Scholar 

  • Kasayapanand N, Kiatsiriroat T (2009) Enhanced heat transfer in partially open square cavities with thin fin by using electric field. Energy Conver Manag 50(2):287–296

    Article  Google Scholar 

  • Kasayapanand N, Kiatsiriroat T, Vorayos N (2006) Enhanced heat transfer in a solar air heater with double-flow configuration by electrohydrodynamic technique. J Enhanc Heat Transf 13(1):39

    Article  Google Scholar 

  • Ko HJ, Dulikravich GS (2000) A fully non- linear model of electro-magneto-hydrodynamics. Int J Non-Linear Mech 35(4):709–719

    Article  MATH  Google Scholar 

  • Kuffel E, Zaengl WS (1984) High-voltage engineering. Pergamon, Oxford

    Google Scholar 

  • Lakeh RB, Molki M (2012) Targeted heat transfer augmentation in circular tubes using a corona jet. J Electrost 70(1):31–42

    Article  Google Scholar 

  • Laohalertdecha S, Wongwises S (2006) Effects of EHD on heat transfer enhancement and pressure drop during two-phase condensation of pure R-134a at high mass flux in a horizontal micro-fin tube. Exp Thermal Fluid Sci 30(7):675–686

    Article  Google Scholar 

  • Laohalertdecha S, Naphon P, Wongwises S (2007) A review of electrohydrodynamic enhancement of heat transfer. Renew Sustain Energ Rev 11(5):858–876

    Article  Google Scholar 

  • Lee SS, Dulikravich GS, Kosovic B (1991) Electrohydrodynamic (EHD) Flow Modeling and Computations, AIAA Paper 91–1469, AIAA Fluid, Plasma Dynamics and Lasers Conference, Honolulu, Hawaii

    Google Scholar 

  • Liu Y, Li R, Wang F, Yu H (2005) The effect of electrode polarity on EHD enhancement of boiling heat transfer in a vertical tube. Exp Thermal Fluid Sci 29(5):601–608

    Article  Google Scholar 

  • Mirzaei M, Saffar-Avval M (2018) Enhancement of convection heat transfer using EHD conduction method. Exp Thermal Fluid Sci 93:108–118

    Article  Google Scholar 

  • Moatimid GM (1994) Electrohydrodynamic stability with mass and heat transfer of two fluids with a cylindrical interface. Int J Eng Sci 33:125–139

    MathSciNet  Google Scholar 

  • Molki M, Ohadi MM, Bloshteyn M (2000) Frost reduction under intermittent electric field, proceedings of 34” National Heat Transfer Conference, Pittsburgh, PA, NHTC 2000–12052

    Google Scholar 

  • Motakeff S (1990) Magnetic field elimination of convective interference with segregation during vertical-Bridgman growth of doped semiconductors. J Crystal Growth 104:833–850

    Article  Google Scholar 

  • Munakata T, Yabe A, Tanasawa I (1993) Effect of electric fields on frosting phenomenon. In: The 6′11 international symposium on transport phenomena in thermal engineering, pp 381–386

    Google Scholar 

  • Nasr A, Debbissi C, Orfi J, Nassrallah S (2009) Evaporation of water by natural convection in partially wetted heated vertical plates: effect of the number of the wetted zone. J Eng Appl Sci 4(1):51–59

    Google Scholar 

  • Nelson DA, Ohadi MM, Zia S, Whipple RL (1991) Electrostatic effects on heat transfer and pressure drop in cylindrical geometries. Heat Transfer Science and Technology, B.-X. Wang, Ed. Hemisphere, New York, pp 33–39

    Google Scholar 

  • Ohadi MM, Nelson DA, Zia S (1991a) Heat transfer enhancement of laminar and turbulent pipe flows via corona discharge. Int J Heat Mass Transf 34:1175–1187

    Article  Google Scholar 

  • Ohadi M, Sharaf N, Nelson D (1991b) Electrohydrodynamic enhancement of heat transfer in a shell-and-tube heat exchanger. Exp Heat Transfer 4(1):19–39

    Article  Google Scholar 

  • Ohadi MM, Li SS, Dessiatoun S (1994) Electrostatic heat transfer enhancement in a tube bundle gas-to-gas heat exchanger. J Enhanced Heat Transfer 1:327

    Article  Google Scholar 

  • Paschkewitz JS, Pratt DM (2000) The influence of fluid properties on electrohydrodynamic heat transfer enhancement in liquids under viscous and electrically dominated flow conditions. Exp Thermal Fluid Sci 21:187–197

    Article  Google Scholar 

  • Pearson MR, Seyed-Yagoobi J (2009) Advances in electrohydrodynamic conduction pumping. IEEE Trans Dielectr Electr Insul 16(2):424–434, 899–910

    Article  Google Scholar 

  • Sabhapathy P, Salcudean ME (1990) Numerical study of flow and heat transfer in LEC growth of GaAs with an axial magnetic field. J Crystal Growth 104:371–388

    Article  Google Scholar 

  • Sadek H, Ching CY, Cotton J (2010) Characterization of heat transfer modes of tube side convective condensation under the influence of an applied DC voltage. Int J Heat Mass Transf 53(19–20):4141–4151

    Article  Google Scholar 

  • Sampath R, Zabaras N (2001) A functional optimization approach to an inverse magneto- convection problem. Comput Methods Appl Mech Eng 190:2063–2097

    Article  MATH  Google Scholar 

  • Satcunanathan S, Deonarine SA (1973) Two-pass solar air heater. Sol Energy 15:41–49

    Article  Google Scholar 

  • Seyed-Yagoobi J (2005) Electrohydrodynamic pumping of dielectric liquids. J Electrost 63(6–10):861–869

    Article  Google Scholar 

  • Terekhov V, Khafaji H, Ekaid A (2015) Numerical simulation for laminar forced convection in a horizontal Insulated Channel with wetted walls, proc. 8th ICCHMT, Istanbul. May:25–28

    Google Scholar 

  • Terekhov VI, Khafaji HQ, Gorbachev MV (2018) Heat and mass transfer enhancement in laminar forced convection wet channel flows with uniform wall heat flux. Journal of Enhanced Heat Transfer 25(6):565

    Article  Google Scholar 

  • Trommelmans J, Janssens J, Maelfat F, Berghmans J (1985) Electric field heat transfer augmentation during condensation of nonconducting fluids on a horizontal surface. IEEE Trans Ind Appl IA-21(2):530–534

    Article  Google Scholar 

  • Van Poppel BP, Desjardins O, Daily JW (2010) A ghost fluid, level set methodology for simulating multiphase electrohydrodynamic flows with application to liquid fuel injection. J Comput Phys 229(20):7977–7996

    Article  MATH  Google Scholar 

  • Wang G, Bao R (2011) Heat transfer augmentation of a transformer oil flow in a smooth tube by EHD effect under high temperatures. J Enhanc Heat Transf 18(2):107–114

    Article  Google Scholar 

  • Wijeysundera NE, Ah LL, Tjioe LE (1982) Thermal performance study of two-pass solar air heaters. Sol Energy 28:363–370

    Article  Google Scholar 

  • Yabe A, Taketani T, Kikuchi K, Mori Y, Hijikata K (1987) Augmentation of condensation heat transfer around vertical cooled tubes provided with helical wire electrodes by applying nonuniform electric fields. In: Wang B-X (ed) Heat transfer science and technology. Hemisphere, Washington, DC, pp 812–819

    Google Scholar 

  • Yabe A, Taketani T, Maki H, Takahashi K, Nakadai Y (1992) Experimental study of electrohydrodynamically(EHD) enhanced evaporator for nonazeotropic mixtures. ASHRAE Trans 98:455–461

    Google Scholar 

  • Yeh HM, Ho CD, Hou JZ (1999) The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate. Energy 24:857–871

    Article  Google Scholar 

  • Yeh HM, Ho CD, Hou JZ (2002) Collector efficiency of double-flow solar air heaters with fins attached. Energy 27:15–727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Electrode Design and Its Placement, Enhancement of Single-Phase Gas and Liquid Flow, Theoretical Studies. In: Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20773-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20773-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20772-4

  • Online ISBN: 978-3-030-20773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics