Skip to main content
Book cover

Centenarians pp 135–148Cite as

Lifestyle Choices, Psychological Stress and Their Impact on Ageing: The Role of Telomeres

  • Chapter
  • First Online:

Abstract

Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes that maintain the genomic integrity of a cell. Telomere shortening with increasing age is a part of the normal ageing process. However, factors such as inflammation, oxidative stress and other genotoxic stressors may also increase the rate of telomere attrition, leading to telomere dysfunction-mediated cellular senescence and accelerating the ageing process. Once telomeres shorten to a critical length, the cell encounters a proliferation block where it either ceases to divide or undergoes programmed cell death. Thus, telomere length is considered a biological clock that limits the lifespan of a cell and an organism: people with short telomeres often have reduced lifespan. Certain lifestyle factors such as smoking, body mass index and psychological stress have been found to correlate with accelerated telomere shortening, likely because they increase DNA damage through oxidative stress. Recently, studies have identified lifestyle factors that can potentially protect telomeres. For example, people who lead a healthy lifestyle by increasing their physical activity, practising meditation, adhering to the Mediterranean diet and using multivitamins have been shown to have longer telomeres than those who do not adhere to such lifestyle changes. This chapter highlights the influence of lifestyle factors on key biological mechanisms associated with telomere maintenance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol. 2006;22:531–57.

    Article  CAS  PubMed  Google Scholar 

  2. McElligott R, Wellinger RJ. The terminal DNA structure of mammalian chromosomes. EMBO J. 1997;16(12):3705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J Biol Chem. 2000;275(26):19719–22.

    Article  CAS  PubMed  Google Scholar 

  4. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–34.

    Article  CAS  PubMed  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  CAS  PubMed  Google Scholar 

  6. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  7. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45. pii: S0047-6374(18)30052-6.

    Article  CAS  PubMed  Google Scholar 

  9. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.

    Article  PubMed  CAS  Google Scholar 

  10. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg. 2010;40(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  12. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60(5):432–5.

    Article  CAS  PubMed  Google Scholar 

  14. Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.

    Article  PubMed  Google Scholar 

  15. Mirabello L, Huang WY, Wong JY, Chatterjee N, Reding D, Crawford ED, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.

    Article  CAS  PubMed  Google Scholar 

  16. Starkweather AR, Alhaeeri AA, Montpetit A, Brumelle J, Filler K, Montpetit M, et al. An integrative review of factors associated with telomere length and implications for biobehavioral research. Nurs Res. 2014;63(1):36–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci. 2006;1067:425–35.

    Article  CAS  PubMed  Google Scholar 

  18. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woo J, Tang N, Leung J. No association between physical activity and telomere length in an elderly Chinese population 65 years and older. Arch Intern Med. 2008;168(19):2163–4.

    Article  PubMed  Google Scholar 

  21. Zhu H, Wang X, Gutin B, Davis CL, Keeton D, Thomas J, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.

    Article  PubMed  Google Scholar 

  22. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.

    Article  PubMed  Google Scholar 

  23. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.

    Article  CAS  PubMed  Google Scholar 

  24. Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.

    Article  PubMed  PubMed Central  Google Scholar 

  25. US Department of Health and Human Services. Physical activity guidelines for Americans: be active, healthy, and happy! Washington, DC: US Department of Health and Human Services; 2008.

    Google Scholar 

  26. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  27. Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    Article  CAS  PubMed  Google Scholar 

  28. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham heart study. Circulation. 2007;116(11):1234–41.

    Article  CAS  PubMed  Google Scholar 

  29. Covas MI, Elosua R, Fitó M, Alcántara M, Coca L, Marrugat J. Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc. 2002;34(5):814–9.

    Article  CAS  PubMed  Google Scholar 

  30. Poulsen HE, Loft S, Vistisen K. Extreme exercise and oxidative DNA modification. J Sports Sci. 1996;14(4):343–6.

    Article  CAS  PubMed  Google Scholar 

  31. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.

    Article  CAS  PubMed  Google Scholar 

  32. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  33. Collins M, Renault V, Grobler LA, St Clair Gibson A, Lambert MI, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.

    Article  CAS  PubMed  Google Scholar 

  34. Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, et al. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res. 2018;52(6):639–47.

    Article  CAS  PubMed  Google Scholar 

  35. Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010;109(2):323–30.

    Article  PubMed  Google Scholar 

  36. Al-Attas OS, Al-Daghri NM, Alokail MS, Alfadda A, Bamakhramah A, Sabico S, et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010;163(4):601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.

    Article  CAS  PubMed  Google Scholar 

  38. Demissie S, Levy D, Benjamin EJ, Cupples LA, Gardner JP, Herbert A, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham heart study. Aging Cell. 2006;5(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  39. Gardner JP, Li S, Srinivasan SR, Chen W, Kimura M, Lu X, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.

    Article  CAS  PubMed  Google Scholar 

  40. Puterman E, Lin J, Blackburn E, O’Donovan A, Adler N, Epel E. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rafie N, Golpour Hamedani S, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.

    Article  CAS  PubMed  Google Scholar 

  42. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24.

    Article  CAS  PubMed  Google Scholar 

  44. Davinelli S, Maes M, Corbi G, Zarrelli A, Willcox DC, Scapagnini G. Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immun Ageing. 2016;13:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Davinelli S, Scapagnini G. Polyphenols: a promising nutritional approach to prevent or reduce the progression of prehypertension. High Blood Press Cardiovasc Prev. 2016;23(3):197–202.

    Article  CAS  PubMed  Google Scholar 

  46. Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  47. da Luz PL, Tanaka L, Brum PC, Dourado PM, Favarato D, Krieger JE, et al. Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis. 2012;224(1):136–42.

    Article  PubMed  CAS  Google Scholar 

  48. Thomas P, Wang YJ, Zhong JH, Kosaraju S, O’Callaghan NJ, Zhou XF, et al. Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat Res. 2009;661(1–2):25–34.

    Article  CAS  PubMed  Google Scholar 

  49. Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, et al. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian stroke prevention study. J Am Geriatr Soc. 2014;62(2):222–9.

    Article  PubMed  Google Scholar 

  50. Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, et al. Diet-related telomere shortening and chromosome stability. Mutagenesis. 2012;27(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  51. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer. 2014;135(8):1884–97.

    Article  CAS  PubMed  Google Scholar 

  53. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8(4):e62781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10. https://doi.org/10.1016/j.arr.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  55. Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, et al. Mediterranean diet and telomere length in Nurses’ health study: population based cohort study. BMJ. 2014;349:g6674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety. 2010;27(4):327–38.

    Article  CAS  PubMed  Google Scholar 

  57. Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens). 2009;8(1):7–22.

    Article  Google Scholar 

  58. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett. 2008;29(3):287–91.

    CAS  PubMed  Google Scholar 

  59. Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants: fact or fiction? CNS Drugs. 2012;26(6):477–90.

    Article  CAS  PubMed  Google Scholar 

  60. Brennan AM, Fargnoli JL, Williams CJ, Li T, Willett W, Kawachi I, et al. Phobic anxiety is associated with higher serum concentrations of adipokines and cytokines in women with diabetes. Diabetes Care. 2009;32(5):926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Albert CM, Chae CU, Rexrode KM, Manson JE, Kawachi I. Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. Circulation. 2005;111(4):480–7.

    Article  PubMed  Google Scholar 

  62. Okereke OI, Prescott J, Wong JY, Han J, Rexrode KM, De Vivo I. High phobic anxiety is related to lower leukocyte telomere length in women. PLoS One. 2012;7(7):e40516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Irie M, Asami S, Nagata S, Ikeda M, Miyata M, Kasai H. Psychosocial factors as a potential trigger of oxidative DNA damage in human leukocytes. Jpn J Cancer Res. 2001;92(3):367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pitsavos C, Panagiotakos DB, Papageorgiou C, Tsetsekou E, Soldatos C, Stefanadis C. Anxiety in relation to inflammation and coagulation markers, among healthy adults: the ATTICA study. Atherosclerosis. 2006;185(2):320–6.

    Article  CAS  PubMed  Google Scholar 

  65. Kessler RC, Ruscio AM, Shear K, Wittchen HU. Epidemiology of anxiety disorders. Curr Top Behav Neurosci. 2010;2:21–35.

    Article  PubMed  Google Scholar 

  66. Evans GW. A multimethodological analysis of cumulative risk and allostatic load among rural children. Dev Psychol. 2003;39(5):924–33.

    Article  PubMed  Google Scholar 

  67. Shonkoff JP, Boyce WT, McEwen BS. Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA. 2009;301(21):2252–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kananen L, Surakka I, Pirkola S, Suvisaari J, Lönnqvist J, Peltonen L, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One. 2010;5(5):e10826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lung FW, Chen NC, Shu BC. Genetic pathway of major depressive disorder in shortening telomeric length. Psychiatr Genet. 2007;17(3):195–9.

    Article  PubMed  Google Scholar 

  70. Parks CG, Miller DB, McCanlies EC, Cawthon RM, Andrew ME, DeRoo LA, et al. Telomere length, current perceived stress, and urinary stress hormones in women. Cancer Epidemiol Biomark Prev. 2009;18(2):551–60.

    Article  CAS  Google Scholar 

  71. Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry. 2010;67(6):531–4.

    Article  CAS  PubMed  Google Scholar 

  72. Cameron N, Demerath EW. Critical periods in human growth and their relationship to diseases of aging. Am J Phys Anthropol. 2002;Suppl 35:159–84.

    Article  PubMed  Google Scholar 

  73. Nelson CA 3rd, Zeanah CH, Fox NA, Marshall PJ, Smyke AT, Guthrie D. Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science. 2007;318(5858):1937–40.

    Article  CAS  PubMed  Google Scholar 

  74. Pollak SD, Nelson CA, Schlaak MF, Roeber BJ, Wewerka SS, Wiik KL, et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 2010;81(1):224–36.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY, et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry. 2012;17(7):719–27.

    Article  CAS  PubMed  Google Scholar 

  76. Toussaint LL, Owen AD, Cheadle A. Forgive to live: forgiveness, health, and longevity. J Behav Med. 2012;35(4):375–86.

    Article  PubMed  Google Scholar 

  77. Smith TW, Glazer K, Ruiz JM, Gallo LC. Hostility, anger, aggressiveness, and coronary heart disease: an interpersonal perspective on personality, emotion, and health. J Pers. 2004;72(6):1217–70.

    Article  PubMed  Google Scholar 

  78. Hoge EA, Chen MM, Orr E, Metcalf CA, Fischer LE, Pollack MH, et al. Loving-kindness meditation practice associated with longer telomeres in women. Brain Behav Immun. 2013;32:159–63.

    Article  PubMed  Google Scholar 

  79. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, et al. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology. 2011;36(5):664–81.

    Article  CAS  PubMed  Google Scholar 

  80. Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.

    Article  CAS  PubMed  Google Scholar 

  81. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland primary prevention study: a nested case-control study. Lancet. 2007;369(9556):107–14.

    Article  CAS  PubMed  Google Scholar 

  82. Needham BL, Rehkopf D, Adler N, Gregorich S, Lin J, Blackburn EH, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology. 2015;26(4):528–35.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Farzaneh-Far R, Cawthon RM, Na B, Browner WS, Schiller NB, Whooley MA. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the heart and soul study. Arterioscler Thromb Vasc Biol. 2008;28(7):1379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.

    Article  PubMed  Google Scholar 

  85. Svensson J, Karlsson MK, Ljunggren Ö, Tivesten Å, Mellström D, Movérare-Skrtic S. Leukocyte telomere length is not associated with mortality in older men. Exp Gerontol. 2014;57:6–12.

    Article  CAS  PubMed  Google Scholar 

  86. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, et al. Leukocyte telomere length and mortality in the cardiovascular health study. J Gerontol A Biol Sci Med Sci. 2011;66(4):421–9.

    Article  PubMed  Google Scholar 

  87. Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011;6(6):e20466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Prescott J, Wentzensen IM, Savage SA, De Vivo I. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res. 2012;730(1–2):75–84.

    Article  CAS  PubMed  Google Scholar 

  89. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomark Prev. 2011;20(6):1238–50.

    Article  CAS  Google Scholar 

  90. Xie H, Wu X, Wang S, Chang D, et al. Long telomeres in peripheral blood leukocytes are associated with an increased risk of soft tissue sarcoma. Cancer. 2013;119(10):1885–91.

    Article  CAS  PubMed  Google Scholar 

  91. Sanchez-Espiridion B, Chen M, Chang JY, Lu C, Chang DW, Roth JA, et al. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res. 2014;74(9):2476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Han J, Qureshi AA, Prescott J, Guo Q, Ye L, Hunter DJ, et al. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol. 2009;129(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  93. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.

    Article  CAS  PubMed  Google Scholar 

  94. Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):djv074.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Davinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davinelli, S., De Vivo, I. (2019). Lifestyle Choices, Psychological Stress and Their Impact on Ageing: The Role of Telomeres. In: Caruso, C. (eds) Centenarians. Springer, Cham. https://doi.org/10.1007/978-3-030-20762-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20762-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20761-8

  • Online ISBN: 978-3-030-20762-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics