Skip to main content

Oval and Flat Tube Geometries, Row Effects in Tube Banks, Local Heat Transfer Coefficient on Plain Fins, Performance Comparison, Numerical Simulation and Patents, Coatings

  • Chapter
  • First Online:
  • 510 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The performance of oval and flat tube geometries, coatings and effect of rows in tube banks are briefed in this chapter. The local heat transfer coefficients for plain fins are presented. The performance comparison of various fin geometries and works on numerical simulation and patents is reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achaichia A, Cowell TA (1988) Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Exp Therm Fluid Sci 1:147–157

    Article  Google Scholar 

  • Bar-Cohen A, Rohsenow WM (1984) Thermally optimum spacing of vertical natural convection cooled parallel plates. J Heat Transf 106(1):116–123

    Article  Google Scholar 

  • Beamer HE, Cowell TA (1998) Heat exchanger cooling fin with varying louver angle. U.S. patent 5,730,214

    Google Scholar 

  • Bejan A, Morega M (1994) The optimal spacing of a stack of plates cooled by turbulent forced convection. Int J Heat Mass Transf 37(6):1045–1048

    Article  Google Scholar 

  • Bejan A, Sciubba E (1992) The optimal spacing of parallel plates cooled by forced convection. Int J Heat Mass Transf 35(12):3259–3264

    Article  Google Scholar 

  • Bemisderfer C, Wanner J (1991) Chevron lanced fin design with unequal leg lengths for a heat exchanger. U.S. patent 5,062,475

    Google Scholar 

  • Boewe D, Yin J, Park YC, Bullard CW, Hrnjak PS (1999) The role of suction line heat exchanger in transcritical R-744 mobile air-conditioning systems. SAE Int. Congress and Exposition, SAE 1999-01-0583

    Google Scholar 

  • Brauer H (1964) Compact heat exchangers. Chem Prog Eng (London) 45(8):451–460

    Google Scholar 

  • Canhoto P, Heitor Reis A (2011) Optimization of forced convection heat sinks with pumping power requirements. Int J Heat Mass Transf 54:1441–1447

    Article  Google Scholar 

  • Cox B (1973) Heat transfer and pumping power performance in tube banks—finned and bare. ASME Paper 73-HT-27

    Google Scholar 

  • Cox B, Jallouk PA (1973) Methods for evaluating the performance of compact heat exchanger surfaces. J Heat Transf 95:464–469

    Article  Google Scholar 

  • Davenport CJ (1983) Correlations for heat transfer and flow friction characteristics of louvered fin. In: Heat transfer—Seattle 1983, AIChE Sym. Ser., No. 225, vol 79, pp 19–27

    Google Scholar 

  • Eckels PW, Rabas TJ (1985) Heat transfer and pressure drop of typical air cooler finned tubes. J Heat Transf 107:198–204

    Article  Google Scholar 

  • Esformes JL (1989) Ramp wing enhanced plate fin. U.S. patent 4,817,709

    Google Scholar 

  • Fiebig M, Valencia A, Mitra NK (1994) Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: a comparison of round and flat tubes. Exp Therm Fluid Sci 8(1):35–45

    Article  Google Scholar 

  • Haberski RJ, Raco RJ (1976) Engineering analysis and development of an advanced technology low cost dry cooling tower heat transfer surface. Curtiss-Wright Corporation, Report No.Cod-2774-1

    Google Scholar 

  • Hatada T, Senshu T (1984) Experimental study on heat transfer characteristics of convex louver fins for air conditioning heat exchangers. ASME paper ASME 84-HT-74

    Google Scholar 

  • Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2011) Micro-channels: reality and myth. J Fluids Eng 133:121–202

    Article  Google Scholar 

  • Hu X, Jacobi AM (1993) Local heat transfer behavior and its impact on a single-row, annularly finned tube heat exchanger. J Heat Transf 115:66–74

    Article  Google Scholar 

  • Ikejima K, Gotoh T, Yumikura T, Takeshita M, Yoshita T (1998) Heat exchanger and method of fabrication the heat exchanger. U.S. patent 5,769,157

    Google Scholar 

  • Itoh M, Kogure H, Iino K, Ochiai I, Kitayama Y, Miyagi M (1986) Fin-and-tube type heat exchanger. U.S. patent 4593756

    Google Scholar 

  • Jang JY, Chen LK (1997) Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. Int J Heat Mass Transf 40(16):3981–3990

    Article  Google Scholar 

  • Jang Y-J, Chen H-C, Han J-C (2001) Computation of flow and heat transfer in two-pass channels with 60 deg ribs. J Heat Transf 123(3):563–575

    Article  Google Scholar 

  • Jones TV, Russell CMB (1980) Heat transfer distribution on annular fins. ASME Paper 78-HT-30

    Google Scholar 

  • Jung GH, Jung SH (1999) Heat exchanger fin having an increasing concentration of slits from an upstream to a downstream side of the fin. U.S. patent 5,934,363

    Google Scholar 

  • Kandlikar SG (1987) A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. In: Ragi EG, Rudy TM, Rabas TJ, Robertson JM (eds) Boiling and condensation in heat transfer equipment, HTD, vol 85, pp 9–20

    Google Scholar 

  • Kearney SP, Jacobi AM (1996) Local convective behavior and fin efficiency in shallow banks of in-line and staggered, annularly finned tubes. J Heat Transf 118(2):317–326

    Article  Google Scholar 

  • Kim JH, Jensen M, Jansen K (2002) Fin shape effects in turbulent heat transfer in tubes with helical fins. In: Heat transfer 2002. Proceedings of the 12th international heat transfer conference, vol 4, pp 183–188

    Google Scholar 

  • Kruckels SW, Kottke V (1970) Investigation of the distribution of heat transfer on fins and finned tube models. Chem Eng Tech 42:355–362

    Google Scholar 

  • Lehtinen A (2005) Analytical treatment of heat sinks cooled by forced convection. PhD thesis, Tampere university of technology, Tampere, Finland

    Google Scholar 

  • Leu J-S, Liu M-S, Liaw J-S, Wang C-C (2001) A numerical investigation of louvered fin-and-tube heat exchangers having circular and oval tube configurations. Int J Heat Mass Transf 44:4235–4243

    Article  Google Scholar 

  • Lindstedt M, Karvinen R (2012) Optimization of isothermal plate fin arrays with laminar forced convection. J Enhanc Heat Transf 19(6):535–547

    Article  Google Scholar 

  • Manglik RM, Zhang JH, Muley A (2005) Low Reynolds number forced convection in three-dimensional wavy-plate-fin compact channels: fin density effects. Int J Heat Mass Transf 48:1439–1449

    Article  Google Scholar 

  • McQuiston FC (1978) Correlation of heat, mass, and momentum transport coefficients for plate-fin-tube heat transfer for surfaces with staggered tube. ASHRAE Trans 54(Part 1):294–309

    Google Scholar 

  • Min J, Webb RL (2000) Condensate carryover phenomena in dehumidifying, finned-tube heat exchangers. Exp Therm Fluid Sci 22:175–182

    Article  Google Scholar 

  • Min J, Webb RL (2004) Numerical analyses of effects of tube shape on performance of a finned tube heat exchanger. J Enhanc Heat Transf 11:61–74

    Article  Google Scholar 

  • Min J, Webb RL, Bemisderfer CH (2000) Long-term hydraulic performance of dehumidifying heat-exchangers with and without hydrophilic coatings. Int J HVAC&R Res 6(3):257–272

    Article  Google Scholar 

  • Mirth DR, Ramadhyani S (1993) Comparison of methods of modeling the air-side heat and mass transfer in chilled water cooling coils. ASHRAE Trans 99(Pt. 2):285–299

    Google Scholar 

  • Mori Y, Nakayama W (1980) Recent advances in compact heat exchangers in Japan. In: Shah RK, McDonald CF, Howard CP (eds) Compact heat exchangers—history, technology, manufacturing technologies. ASME Symp. HTD, vol 10, pp 5–16

    Google Scholar 

  • Muzychka YS (2005) Constructal design of forced convection cooled microchannel heat sinks and heat exchangers. Int J Heat Mass Transf 48:3119–3127

    Article  Google Scholar 

  • Neal SBHC, Hitchcock JA (1966) A study of the heat transfer processes in banks of finned tubes in cross flow, using a large scale model technique. In: Proceedings of the third international heat transfer conference, vol 3. American Institute of Chemical Engineers, pp 290–298

    Google Scholar 

  • O’Brien JE, Sohal MS, Wallstedt PC (2001) Local heat transfer and pressure drop for finned-tube heat exchangers using oval tubes and vortex generators. In: Proceedings of 2001 ASME international mechanical engineering congress and exposition, ASME, New York, Paper No. IMECE2001/HTD-24118

    Google Scholar 

  • O’Connor JM, Pasternak SF (1976) Method of making a heat exchanger. U. S. Patent 3,947,941

    Google Scholar 

  • Onishi H, Inaoka K, Matsubara K, Suzuki K (1999) Numerical analysis of flow and conjugate heat transfer of two-row plate-finned tube heat exchanger. In: Shah RK, Bell KJ, Honda H, Thonon B (eds) Proceedings of the international conference on compact heat exchangers and enhancement technology for the process industries. Begell House Inc., New York, pp 175–183

    Google Scholar 

  • Rabas TI, Huber FV (1989) Row number effects on the heat transfer performance of in-line finned tube banks. Heat Transf Eng 10(4):19–29

    Article  Google Scholar 

  • Rabas TJ, Myers GA, Eckels PW (1986) Comparison of the thermal performance of serrated high-finned tubes used in heat-recovery systems. In: Chiou JP, Sengupta S (eds) Heat transfer in waste heat recovery and heat rejection systems. ASME Symp. HTD, vol 59, pp 33–40

    Google Scholar 

  • Saboya FEM, Sparrow EM (1974) Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations. J Heat Transf 96:265–272

    Article  Google Scholar 

  • Saboya FEM, Sparrow EM (1976a) Experiments on a three-row fin and tube heat exchanger. J Heat Transf 98:520–522

    Article  Google Scholar 

  • Saboya FEM, Sparrow EM (1976b) Transfer characteristics of two-row plate fin and tube heat exchanger configurations. Int Heat Mass Transf 19:41–49

    Article  Google Scholar 

  • Saha A (2008) Effect of the number of periodic module on flow and heat transfer in a periodic array of cubic pin-fins inside a channel. J Enhanc Heat Transf 15(3):243–260

    Article  Google Scholar 

  • Sheui TWH, Tsai SF, Chiang TP (1999) Numerical study of heat transfer in two-row heat exchangers having extended fin surfaces. Numer Heat Transf Part A 35(7):797–814

    Article  Google Scholar 

  • Somchai W, Yutasak C (2005) Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers. Energy Convers Manag 46:2216–2231

    Article  Google Scholar 

  • Tanaka T, Hatada T, Itoh M, Senshu T, Katsumata N, Michizuki Y, Terada H, Izushi M, Sato M, Tsuji H, Nagai M (1994) Fin-tube heat exchanger. U.S. patent 5,360,060

    Google Scholar 

  • Tao YB, He YL, Wu ZG, Tao WQ (2007) Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes. Int J Heat Fluid Flow 28(6):1531–1544

    Article  Google Scholar 

  • Teertstra P, Yovanovich MM, Culham JR (2000) Analytical forced convection modeling of plate fin heat sinks. J Electron Manuf 10(4):253–261

    Article  Google Scholar 

  • Torikoshi K, Xi G (1995) A numerical study of flow and thermal fields in finned tube heat exchangers. In: Proceedings of the IMECE, HTD, vol 317-1, pp 453–458

    Google Scholar 

  • Torikoshi K, Xi GN, Nakazawa Y, Asano H (1994) Flow and heat transfer performance of a plate fin-and-tube heat exchanger (1st report: effect of fin pitch). In: Heat transfer 1994. Proceedings of the 10th international heat transfer conference, vol 4, pp 411–416

    Google Scholar 

  • Tsai SF, Sheu TWH, Lee SM (1999) Heat transfer in a conjugate heat exchanger with a wavy fin surface. Int J Heat Mass Transf 42:1735–1745

    Article  Google Scholar 

  • Ueda H, Hatada T, Kunugi N, Ooucgi T, Sugimoto S, Shimizu T, Kohno K (1994) Heat transfer fins and heat exchanger. U.S. patent 5,353,886

    Google Scholar 

  • Valencia A, Fiebig M, Mitra NK (1996) Heat transfer enhancement by longitudinal vortices in a fin-tube heat exchanger element with flat tubes. J Heat Transf 118(1):209–211

    Article  Google Scholar 

  • Wang CC, Fu WL, Chang CT (1997) Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Heat Transf Friction Charact 14:174–186

    Google Scholar 

  • Wang CC, Jang JY, Chiou NF (1999) A heat transfer and friction correlation for wavy fin-and-tube heat exchangers. Int J Heat Mass Transf 42:1919–1924

    Article  Google Scholar 

  • Wang C-C (2000) Recent progress on the air-side performance of fin-and-tube heat exchangers. Int J Heat Exchanges 1:49–76

    Google Scholar 

  • Wang C-C, Chi K-Y, Chang C-J (2000) Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: correlation. Int J Heat Mass Transf 43:2693–2700

    Article  Google Scholar 

  • Webb RL (1990) The flow structure in the louvered fin exchanger geometry. SAE Int. Congress and Exposition, SAE 900722

    Google Scholar 

  • Webb RL, Gupte N (1990) Design of light weight heat exchangers for air-to-two phase service. In: Shah RK, Kraus AD, Metzger D (eds) Compact heat exchangers: a Festschrift for A. L. London. Hemisphere Publishing Corp., Washington, pp 311–334

    Google Scholar 

  • Webb RL, Iyengar A (2001) Oval finned tube condenser and design pressure limits. J Enhanc Heat Transf 8:147–158

    Article  Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor & Francis, New York

    Google Scholar 

  • Wieting AR (1975) Empirical correlations for heat transfer and flow friction characteristics of rectangular offset fin heat exchangers. J Heat Transf 97:488–490

    Article  Google Scholar 

  • Wu JM, Tao WQ (2007) Numerical computation of laminar natural convection heat transfer around a horizontal compound tube with external longitudinal fins. Heat Transf Eng 28(2):93–102

    Article  Google Scholar 

  • Xin RC, Li HZ, Kang HJ, Li W, Tao WQ (1994) An experimental investigation on heat transfer and pressure drop characteristics of triangular wavy fin-and-tube heat exchanger surfaces. J Xi’an Jiaotong Univ 28(2):77–83

    Google Scholar 

  • Yilmaz A, Büyükalaca O, Yilmaz T (2000) Optimum shape and dimensions of ducts for convective heat transfer in laminar flow at constant wall temperature. Int J Heat Mass Transf 43:767–775

    Article  Google Scholar 

  • Youn B, Kim YS (1998) Heat exchanger fins of an air conditioner. U.S. patent 5725625

    Google Scholar 

  • Yun J-Y, Kim H-Y (1997) Structure of heat exchanger. U.S. patent 5697432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Oval and Flat Tube Geometries, Row Effects in Tube Banks, Local Heat Transfer Coefficient on Plain Fins, Performance Comparison, Numerical Simulation and Patents, Coatings. In: Heat Transfer Enhancement in Externally Finned Tubes and Internally Finned Tubes and Annuli. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20748-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20748-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20747-2

  • Online ISBN: 978-3-030-20748-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics