Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 506 Accesses

Abstract

The performance characteristics of round tubes having plain-plate fins are discussed in this chapter. The concepts of wavy fins, louvred fins, multi louvred fins, fin numbering, etc. are explained in detail. Staggered and in-line arrangement of tube bundles and fin spacing are the other topics covered here. The correlations for configurations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Madi M, Johns RA, Heikal MR (1998) Performance characteristics correlation for round tube and plate finned heat exchangers. Int J Refrig 21:507–517

    Article  Google Scholar 

  • Ahmadi M, Mostafavi G, Bahrami M (2014) Natural convection from rectangular interrupted fins. Int J Therm Sci 82(1):62–71

    Article  Google Scholar 

  • Alam I, Ghoshdastidar PS (2002) A study of heat transfer effectiveness of circular tubes with internal longitudinal fins having tapered lateral profiles. Int J Heat Mass Transf 45(6):1371–1376

    Article  MATH  Google Scholar 

  • Al-Arabi M, Khamis M (1982) Natural convection heat transfer from inclined cylinders. Int J Heat Mass Transf 25(I):3–15

    Article  Google Scholar 

  • An BH, Kim HJ, Kim DK (2012) Nusselt number correlation for natural convection from vertical cylinders with vertically oriented plate fins. Exp Thermal Fluid Sci 41:59–66

    Article  Google Scholar 

  • Atayılmaz SO, Teke I (2009) Experimental and numerical study of the natural convection from a heated horizontal cylinder. Int Commun Heat Mass Transf 36:731–738

    Article  Google Scholar 

  • Atayılmaz SO, Teke I (2010) Experimental and numerical study of the natural convection from a heated horizontal cylinder wrapped with a layer of textile material. Int Commun Heat Mass 37:58–67

    Article  Google Scholar 

  • Atkinson KN, Drakulic R, Heikal MR, Cowell TA (1998) Two- and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers. Int J Heat Mass Transf 41:4063–4080

    Article  MATH  Google Scholar 

  • Awad M, Muzychka YS (2011) Models for pressure drop and heat transfer in air cooled compact wavy fin heat exchangers. J Enhanc Heat Transf 18(3):191–207

    Article  Google Scholar 

  • Bahrami S, Rahimian MH, Mohammadbeigi H, Hosseinimanesh H (2012) Thermal-hydraulic study of multi-louvered fins in compact heat exchangers and recommendations for improvement. J Enhanc Heat Transf 19(1):53–61

    Article  Google Scholar 

  • Beckwith TG, Marangoni RD, Lienhard JH (1990) Mechanical measurements, 5th edn. Addison-Wesley Publishing Company, New York, pp 45–112

    Google Scholar 

  • Bhise NV, Katte SS, Venkateshan SP (2002) A numerical study of corrugated structure for space radiators. In: 16th national and 5th ISHMT–ASME heat and mass transfer conference Kolkata, pp 520–526

    Google Scholar 

  • Bilen K, Yapici S (2002) Heat transfer from a surface fitted with rectangular blocks at different orientation angle. Heat Mass Transf 38:649–655

    Article  Google Scholar 

  • Black WZ (1973) Optimization of the directional emission from V-groove and rectangular cavities. J Heat Transf 95:31–36

    Article  Google Scholar 

  • Black WZ, Schoenhals RJ (1968) A study of directional radiation properties of specially pre pared ‘V’-groove cavities. J Heat Transf 90:420–428

    Article  Google Scholar 

  • Chae MS, Chung BJ (2011) Effect of pitch-to-diameter ratio on the natural convection heat transfer of two vertically aligned horizontal cylinders. Exp Thermal Fluid Sci 66:5321–5329

    Google Scholar 

  • Chang YJ, Hsu KC (2000) Generalized friction correlation for louver fin geometry. Int J Heat Mass Transf 43(12):2237–2243

    Article  Google Scholar 

  • Chang Y, Wang C (1996) Air-side performance of brazed aluminium heat exchangers. J Enhanc Heat Transf 3(1):15–28

    Article  Google Scholar 

  • Chang Y, Wang C (1997) A generalized heat transfer correlation for louvered fin geometry. Int Heat Transf 40(3):533–544

    Article  MathSciNet  Google Scholar 

  • Chang Y, Wang C, Chang W (1994) Heat transfer and flow characteristics of automotive brazed aluminium heat exchangers. ASHRAE Trans 100(2):643–652

    Google Scholar 

  • Chen HT, Hsu WL (2007) Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings. Int J Heat Mass Transf 50:1750–1761

    Article  MATH  Google Scholar 

  • Chung BTF, Nguyen LD (1987) Thermal analysis and optimum design for radiating spine of various geometries. In: Proceedings of the international symposium on heat transfer science and technology Beijing People’s Republic of China October 15–18 198 (A87-33101 13-34). Hemisphere Publishing Corp, Washington, DC, pp 510–517

    Google Scholar 

  • Dillen EL, Webb RL (1994) Rationally based heat transfer and friction correlations for the louver fin geometry. SAE Tech Paper Ser 94050:600–607

    Google Scholar 

  • Dong J, Chen J, Chen Z, Zhang W, Zhou Y (2007) Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers. Energy Convers Manag 48:1506–1515

    Article  Google Scholar 

  • Eckert E, Irvine T (1960) Pressure drop and heat transfer in a duct with triangular cross-section. ASME J Heat Transf 83:125–136

    Article  Google Scholar 

  • Elenbaas W (1942) Heat dissipation of parallel plates by free convection. Physica 9(1):1–28

    Article  MATH  Google Scholar 

  • El-Saed SA, Mohamed SM, Abdel-Latif AM, Abouda AE (2002) Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular fin-arrays of different geometries and shrouded fin array. Exp Thermal Fluid Sci 26:879–900

    Article  Google Scholar 

  • Fabbri G (1998) Heat transfer optimization in internally finned tubes under laminar flow conditions. Int J Heat Mass Transf 41(10):1243–1253

    Article  MATH  Google Scholar 

  • Fabbri G (1999) Optimum profiles for asymmetrical longitudinal fins in cylindrical ducts. Int J Heat Mass Transf 4(23):511–523

    Article  MATH  Google Scholar 

  • Fiebig M, Gorsse-Georgemann A, Chen Y, Mitra NK (1995) Conjugate heat transfer of a finned tube part A: heat transfer behaviour and occurrence of heat transfer reversal. Numer Heat Transf Part A 28:133–146

    Article  Google Scholar 

  • Gorchakov VS, Panevin IG (1975) Effectiveness of radiating fins covered with V-shaped grooves. http://techreports.iarc.nasa.gov/egiin/ NTRS

  • Gorchakov VS, Panevin IG (1976) Efficiency of radiating fins covered with V-shaped grooves. J High Temp 13(4):733–738

    Google Scholar 

  • Gray DL, Webb RL (1986) Heat transfer and friction correlations for plate fin-and-tube heat exchangers having plain fins. In: Heat transfer 1986. Proceedings of the eighth international heat transfer conference, pp 2745–2750

    Google Scholar 

  • Haghighi SS, Goshayeshi HR, Safaei MR (2018) Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int J Heat Mass Transf 125:640–647

    Article  Google Scholar 

  • Haldar SC, Kochhar GS, Manohar K, Sahoo RK (2007) Numerical study of laminar free convection about a horizontal cylinder with longitudinal fins of finite thickness. Int J Therm Sci 46:692–698

    Article  Google Scholar 

  • Holman JP (2000) Experimental methods for engineering. Ch. 2 and 3. McGraw-Hill, New York

    Google Scholar 

  • Incropera FP, DeWitt DP (2001) Fundamentals of heat mass transfer, 5th edn. Wiley, New York

    Google Scholar 

  • Islam MD, Oyakawa K, Yaga M (2008) Heat transfer enhancement from a surface affixed with rectangular fins of different patterns and arrangement in duct flow. J Enhanc Heat Transf 15(1):31–50

    Article  Google Scholar 

  • Jacob ML (1938) Heat transfer and flow resistance in cross flow of gases over tube banks. Trans ASME 60:384

    Google Scholar 

  • Jeon D, Byon C (2017) Thermal performance of plate fin heat sinks with dual-height fins subject to natural convection. Int J Heat Mass Transf 113:1086–1092

    Article  Google Scholar 

  • Ji C, Qin Z, Low Z, Dubey S, Choo FH, Duan F (2018) Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Appl Therm Eng 129:269–279

    Article  Google Scholar 

  • Joo Y, Kim SJ (2015) Comparison of thermal performance between plate-fin and pin fin heat sinks in natural convection. Int J Heat Mass Transf 83:345–356

    Article  Google Scholar 

  • Junqi D, Jiangping C, Zhijiu C, Yimin Z, Wenfeng Z (2007) Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers. Appl Therm Eng 27(11–12):2066–2073

    Article  Google Scholar 

  • Kadle DS, Sparrow EM (1986) Numerical and experimental study of turbulent heat transfer and fluid flow in longitudinal fin array. ASME J Heat Transf 108:16–23

    Article  Google Scholar 

  • Kaminski S (2002) Numerische Simulation der luftseitigen Stromungs-und Warmetransportvorgange in Lamellenrohr-Warmeubertragern. Techn. Univ. Bergakad, Freiberg

    Google Scholar 

  • Kaminski S, Groß U (2003) Luftseitige Transportprozesse in Lamellenrohrbundeln—numerische Untersuchung. Ki Luft und Kaltetechnik (5):220–224

    Google Scholar 

  • Kayansayan N (1993) Heat transfer characterization of flat plain fins and round tube heat exchangers. Exp Thermal Fluid Sci 6(3):263–272

    Article  Google Scholar 

  • Kim N-H, Youn B, Webb RL (1999) Air-side heat transfer and friction correlations for plain fin-and-tube heat exchangers with staggered tube arrangements. J Heat Transf 121(3):662–667

    Article  Google Scholar 

  • Krikkis RN, Razelos P (2002) Optimum design of spacecraft radiators with longitudinal rectangular and triangular fins. J Heat Transf 124:805–811

    Article  Google Scholar 

  • Krikkis RN, Razelos P (2003) The optimum design of radiating and convective-radiating circular fins. J Heat Transf Eng 24(3):17–41

    Article  Google Scholar 

  • Krishnaprakas CK (1996) Optimum design of radiating rectangular plate fin array extending from a plane wall. J Heat Transf 118:490–493

    Article  Google Scholar 

  • Kumar SS, Venkateshan SP (1994) Optimized tubular radiator with annular fins on a non-isothermal base. Int J Heat Fluid Flow 15:399–409

    Article  Google Scholar 

  • Kumar R (1997) Three-dimensional natural convective flow in a vertical annulus with longitudinal fins. Int J Heat Mass Transf 40(14):3323–3334

    Article  MATH  Google Scholar 

  • Lawson MJ, Thole KA (2008) Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets. Int J Heat Mass Transf 51:2346–2360

    Article  Google Scholar 

  • Lee M, Kim HJ, Kim DK (2016) Nusselt number correlation for natural convection from vertical cylinders with triangular fins. Appl Therm Eng 93:1238–1247

    Article  Google Scholar 

  • Lin Y-T, Hwang Y-M, Wang C-C (2002) Performance of the herringbone wavy fin under dehumidifying conditions. Int J Heat Mass Transf 45:5035–5044

    Article  Google Scholar 

  • Liu XY, Jensen MK (1999) Numerical investigation of turbulent flow and heat transfer in internally finned tubes. J Enhanc Heat Transf 6(2–4):105–119

    Article  Google Scholar 

  • Lyman AC, Stephan RA, Thole KA, Zhang LW, Memory SB (2002) Scaling of heat transfer coefficients along louvered fins. Exp Thermal Fluid Sci 26:547–563

    Article  Google Scholar 

  • McQuiston FC (1978) Correlation of heat, mass, and momentum transport coefficients for plate-fin-tube heat transfer for surfaces with staggered tube. ASHRAE Trans 54(Part 1):294–309

    Google Scholar 

  • Micheli L, Reddy K, Mallick TK (2016) Experimental comparison of micro-scaled plate-fins and pin-fins under natural convection. Int Commun Heat Mass Transf 75:59–66

    Article  Google Scholar 

  • Mohammadian SK, Zhang Y (2017) Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Appl Therm Eng 118:375–384

    Article  Google Scholar 

  • Mokheimer EMA (2002) Performance of annular fins with different profiles subject to variable heat transfer coefficient. Int J Heat Mass Transf 45:3631–3642

    Article  MATH  Google Scholar 

  • Molki M, Faghri M, Ozbay O (1995) A correlation for heat transfer and wake effect in the entrance region of an inline array of rectangular blocks simulating electronic components. ASME J Heat Transf 117:40–46

    Article  Google Scholar 

  • Mon MS, Gross U (2004) Numerical study of fin-spacing effects in annular-finned tube heat exchangers. Int J Heat Mass Transf 47(8–9):1953–1964

    Article  Google Scholar 

  • Muley A, Borghese J, Manglik RM, Kundu J (2002) Experimental and numerical investigation of thermal-hydraulic characteristics of wavy-channel compact heat exchanger. In: Proc. 12th international heat transfer conference France, vol 4, pp 417–422

    Google Scholar 

  • Muley A, Borghese JB, White SL, Manglik RM (2006) Enhanced thermal-hydraulic performance of a wavy-plate fin compact heat exchanger: effect of corrugation severity. In: Proc. 2006 ASME international mechanical engineering congress and exposition (IMECE2006), Chicago, IL, USA, IMECE2006-14755

    Google Scholar 

  • Murali JG, Katte SS (2008) Experimental investigation of threaded, grooved, and tapered radiating pin-fin. J Enhanc Heat Transf 15(3):199–209

    Article  Google Scholar 

  • Muzychka YS (1999) Analytical and experimental study of fluid friction and heat transfer in low Reynolds number flow heat exchangers. Ph. D Thesis. University of Waterloo, Waterloo, ON

    Google Scholar 

  • Muzychka YS, Kenway G (2009) A model for the thermal hydraulic characteristics of the offset strip fin array for large Prandtl number liquids. J Enhanc Heat Transf 16(1):73–92

    Article  Google Scholar 

  • Na TY, Chiou JP (1980) Turbulent natural convection over a slender circular cylinder. Warme Stoffubertrag 14:157–164

    Article  Google Scholar 

  • Ohara J, Koyama S (2012) Falling film evaporation of pure refrigerant HCFC123 in a plate-fin heat exchanger. J Enhanc Heat Transf 19(4):301–311

    Article  Google Scholar 

  • Olson DA (1992) Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages. ASME J Heat Transf 114:373–382

    Article  Google Scholar 

  • Oyakawa K, Furukawa Y, Taira T, Senaha I (1993) Effect of vortex generators on heat transfer enhancement in a duct. In: Proceedings of the experimental heat transfer, fluid mechanics and thermodynamics Honolulu, Hawaii, vol 1, pp 633–640

    Google Scholar 

  • Park J, Ligrani PM (2005) Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel. Numer Heat Transf Part A Appl 47(3):209–232

    Article  Google Scholar 

  • Park KT, Kim HJ, Kim DK (2014) Experimental study of natural convection from vertical cylinders with branched fins. Exp Thermal Fluid Sci 54:29–37

    Article  Google Scholar 

  • Perrotin T, Clodie D (2004) Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers. Int J Refriger 27:422–432

    Article  Google Scholar 

  • Popiel CO, Wojtkowiak J, Bober K (2007) Laminar free convective heat transfer from isothermal vertical slender cylinder. Exp Thermal Fluid Sci 32(2007):607–613

    Article  Google Scholar 

  • Qiu Y, Tian M, Guo Z (2013) Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber. Heat Mass Transf 49:405–412

    Article  Google Scholar 

  • Ramesh N, Venkateshan SP (1997) Optimum finned tubular space radiator. Heat Transf Eng 18:69–87

    Article  Google Scholar 

  • Rich DG (1973) The effects of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers. ASHRAE Trans 79(Part 2):137–145

    Google Scholar 

  • Rich DG (1975) Effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers. ASHRAE Trans 81(Part 1):307–319

    Google Scholar 

  • Romero-Méndez R, Sen M, Yang KT, McClain R (2000) Effect of fin spacing on convection in a plate fin and tube heat exchanger. Int J Heat Mass Transf 43(1):39–51

    Article  Google Scholar 

  • Rush TA, Newell TA, Jacobi AM (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf 42(9):1541–1553

    Article  Google Scholar 

  • Saad AE, Sayed AE, Mohamed EA, Mohamed MS (1997) Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Thermal Fluid Sci 15(1):1–15

    Article  Google Scholar 

  • Saboya FEM, Sparrow EM (1974) Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations. J Heat Transf 96(3):265–272

    Article  Google Scholar 

  • Saboya FEM, Sparrow EM (1976) Transfer characteristics of two-row plate fin and tube heat exchanger configurations. Int J Heat Mass Transf 19(1):41–49

    Article  Google Scholar 

  • Sajedi R, Taghilou M, Jafari M (2015) Experimental and numerical study on the optimal fin numbering in an external extended finned tube heat exchanger. Appl Therm Eng 83:139–146

    Article  Google Scholar 

  • Sarkhi AA, Nada EA (2005) Characteristics of forced convection heat transfer in vertical internally finned tube. Int Commun Heat Mass Transf 32:557–564

    Article  Google Scholar 

  • Schmidt TE (1963) Der Warmeiibergang an Rippenrohre and die Berechnung von Rohrbundel-Warmeaustauschern, Kaltetechnik, Band 15, Heft 12

    Google Scholar 

  • Schnurr NM, Townsend MA, Shapiro AB (1976) Optimization of radiating fin arrays with respect to weight. ASME Trans J Heat Transf 98:643–648

    Article  Google Scholar 

  • Seshimo Y, Fujii M (1991) An experimental study on the performance of plate fin and tube heat exchangers at low Reynolds numbers. In: Proceedings of the ASME-JSME thermal engineering joint conference, vol 4, pp 449–454

    Google Scholar 

  • Sheik Ismail L, Ranganayakulu C, Shah RK (2009) Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins. Int J Heat Mass Transf 52(17–18):3972–3983

    Article  Google Scholar 

  • Sheik Ismail L, Velraj R, Ranganayakulu C (2010) Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers—a review. Renew Sust Energ Rev 14(1):478–485

    Article  Google Scholar 

  • Sheu TW, Tsai SF (1999) A comparison study on fin surfaces in finned-tube heat exchangers. Int J Numer Methods Heat Fluid Flow 9(1):92–106

    Article  MATH  Google Scholar 

  • Shih TH, Liou WW, Shabbrir A, Yang ZG, Zhu J (1995) A new k–e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238

    Article  MATH  Google Scholar 

  • Sparrow EM, Niethammer JE, Chaboki A (1982) Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment. Int J Heat Mass Transf 25:961–973

    Article  Google Scholar 

  • Sparrow EM, Vemuri SB, Kadle D (1983) Enhanced and local heat transfer, pressure drop, and flow visualization for arrays of block-like electronic components. Int J Heat Mass Transf 26:689–699

    Article  Google Scholar 

  • Srinivasan K, Katte SS (2004) Analysis of grooved space radiator. In: Proceedings of the 17th national and 6th ISHMT-ASME heat and mass transfer confence, Kalpakkam, vol 12

    Google Scholar 

  • Sunden B, Svantesson J (1992) Correlation of j-and f-factors for multilouvered heat transfer surfaces. In: Proc. 3rd UK national conference on heat transfer, pp 805–811

    Google Scholar 

  • Taghilou M, Ghadimi B, Seyyedvalilu MH (2014) Optimization of double pipe fin pin heat exchanger using entropy generation minimization. IJE Trans C Aspects 27(9):1445–1454

    Google Scholar 

  • Torii K, Yanagihara JI (1997) A review on heat transfer enhancement by longitudinal vortices. J HTSJ 36(142):73–86

    Google Scholar 

  • Torikoshi K (1994) Flow and heat transfer performance of a plate-fin and tube heat exchanger. Heat Transf 4:411–416

    Google Scholar 

  • Turk AY, Junkhan GH (1986) Heat transfer enhancement downstream of vortex generators on a flat plate. In: Tien CL, Carey VP, Ferrell JK (eds) Heat transfer, vol 6. Hemisphere, Washington, pp 2903–2908

    Google Scholar 

  • Wang C-C, Chi K-Y (2000) Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data. Int J Heat Mass Transf 43:2681–2691

    Article  Google Scholar 

  • Wang C-C, Chen P-Y, Jang J-Y (1996) Heat transfer and friction characteristics of convex-louver fin-and-tube heat exchangers. Exp Heat Transf 9:61–78

    Article  Google Scholar 

  • Wang C-C, Chi K-Y, Chang C-J (2000) Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: correlation. Int J Heat Mass Transf 43:2693–2700

    Article  Google Scholar 

  • Wang QW, Lin M, Zeng M (2008a) Effect of blocked core-tube diameter on heat transfer performance of internally finned tubes. Heat Transf Eng 29(1):107–115

    Article  Google Scholar 

  • Wang QW, Lin M, Zeng M, Tian L (2008b) Computational analysis of heat transfer and pressure drop performance for internally finned tubes with three different longitudinal wavy fins. Heat Mass Transf 45:147–156

    Article  Google Scholar 

  • Wang QW, Lin M, Zeng M, Tian L (2008c) Investigation of turbulent flow and heat transfer in periodic wavy channel of internally finned tube with blocked core tube. ASME J Heat Transf 130(6). Article No.: 061801

    Article  Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor & Francis, New York

    Google Scholar 

  • Wilkins JE Jr (1960) Minimizing the mass of thin radiating fins. J Aerospace Sci 27:145–146

    Google Scholar 

  • Xi GN, Torikoshi K (1996) Computation and visualizationof flow and heat transfer in finned tube heat exchangers. In: International symposium on heat transfer, Tsinhua University, Beijing China (7.10–11.10), pp 632–637

    Google Scholar 

  • Yan W-M, Sheen P-J (2000) Heat transfer and friction characteristics of finand-tube heat exchangers. Int J Heat Mass Transf 43:1651–1659

    Article  Google Scholar 

  • Yang YT, Peng HS (2009) Investigation of planted pin fins for heat transfer enhancement in plate fin heat sink. Microelectron Reliab 49(2):163–169

    Article  Google Scholar 

  • Yang Y, Li Y, Si B, Zheng J (2017) Heat transfer performances of cryogenic fluids in offset strip fin-channels considering the effect of fin efficiency. Int J Heat Mass Transf 114:1114–1125

    Article  Google Scholar 

  • YazicioÄŸlu B, Yüncü H (2007) Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer. Heat Mass Transf 44(1):11–21

    Article  Google Scholar 

  • Youn B (1997) Internal report. Samsung Electric Corp

    Google Scholar 

  • Yu B, Tao WQ (2004) Pressure drop and heat transfer characteristics of turbulent flow in annular tubes with internal wave-like longitudinal fins. Heat Mass Transf 40:643–651

    Article  Google Scholar 

  • Yu B, Nie JH, Wang QW, Tao WQ (1999) Experimental study on the pressure drop and heat transfer characteristics of tubes with internal wave-like longitudinal fins. Heat Mass Transf 35:65–73

    Article  Google Scholar 

  • Yu X, Feng J, Feng Q, Wang Q (2005) Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl Therm Eng 25(2):173–182

    Article  Google Scholar 

  • Zaretabar M, Asadian H, Ganji D (2018) Numerical simulation of heat sink cooling in the mainboard chip of a computer with temperature dependent thermal conductivity. Appl Therm Eng 130:1450–1459

    Article  Google Scholar 

  • Zeitoun O, Hegazy AS (2004) Heat transfer for laminar flow in internally finned pipes with different fin heights and uniform wall temperature. Heat Mass Transf 40:253–259

    Article  Google Scholar 

  • Zhang J (2005) Numerical simulations of steady low-Reynolds-number flows and enhanced heat transfer in wavy plate-fin passages. Ph.D. thesis, University of Cincinnati

    Google Scholar 

  • Zhang J, Muley A, Borghess JB, Manglik RM (2003) Computational and experimental study of enhanced laminar flow heat transfer in three dimensional sinusoidal wavy-plate-fin channels. In: Proceedings of the 2003 ASME summer heat transfer conference, Nevada, USA, HT2003-47148

    Google Scholar 

  • Zhang J, Kundu J, Manglik RM (2004) Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int J Heat Mass Trans 47:1719–1730

    Article  Google Scholar 

  • Zukauskas A (1972) Heat transfer from tubes in crossflow. In: Hartnett JP, Irvine TF (eds) Advances in heat transfer, vol 8. Academic Press, New York, pp 93–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Round Tubes Having Plain-Plate Fins. In: Heat Transfer Enhancement in Externally Finned Tubes and Internally Finned Tubes and Annuli. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20748-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20748-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20747-2

  • Online ISBN: 978-3-030-20748-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics