Skip to main content

Wavy Fin, 3D Corrugated Fin, Perforated Fin, Pin Fin, Wire Mesh, Metal Foam Fin, Packings, Numerical Simulation

  • Chapter
  • First Online:
  • 607 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The performance of different plate-fins such as wavy fins, corrugated fins, perforated fins, pin-fins, pin-fin arrays, wire meshes, metal foam fins, and packing has been presented in this chapter. The use of plate-fins for cooling heat sinks has also been discussed. The numerical studies on heat transfer enhancement performance of plate-fins have been mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Kariem AH, Fletcher LS (1999) Comparative analysis of heat transfer and pressure drop in plate heat exchangers. In: Proc of the 5th ASME/JSME thermal eng conf, San Diego, CA, AJTE99-6291

    Google Scholar 

  • Abed WM, Whalley RD, Dennis DJ, Poole RJ (2015) Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int J Heat Mass Transfer 88:790–802

    Article  Google Scholar 

  • Abou-Madi M (1998) A computer model for mobile air-conditioning system. PhD thesis, University of Brighton, Brighton, UK

    Google Scholar 

  • Achaichia A, Cowell IA (1988) Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Exp Therm Fluid Sci 1:147–157

    Article  Google Scholar 

  • Ahmed HE, Mohammed HA, Yusoff MZ (2012) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sust Energ Rev 16:5951–5993

    Article  Google Scholar 

  • Aihara T, Maruyama S, Kobayakawa S (1990) Free convective/radiative heat transfer from pin-fin arrays with a vertical base plate (general representation of heat transfer performance). Int J Heat Mass Transfer 33(6):1223–1232

    Article  Google Scholar 

  • Ali MM, Ramadhyani S (1992) Experiments on convective heat transfer in corrugated channels. Exp Heat Transfer 5:175–193

    Article  Google Scholar 

  • Alkam MK, Al-Nimr MA, Hamdan MO (2001) Enhancing heat transfer in parallel-plate channels by using porous inserts. Int J Heat Mass Transfer 44:931–938

    Article  MATH  Google Scholar 

  • Althaher MA, Abdul-Rassol AA, Ahmed HE, Mohammed HA (2012) Turbulent heat transfer enhancement in a triangular duct using delta-winglet vortex generators. Heat Transfer Asian Res 41:43–62

    Article  Google Scholar 

  • Armstrong JE, Winstanley DA (1988, Jan 1) A review of staggered array pin fin heat transfer for turbine cooling applications. J Turbomach 110(1):94–103

    Article  Google Scholar 

  • Anashkin OP, Keilin VE, Patrikeev VM (1976) Compact high efficiency perforated-plate heat exchangers(in helium refrigerators). Cryogenics 16:437–439

    Article  Google Scholar 

  • Aris MS, McGlen R, Owen I, Sutcliffe CJ (2011) An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng 31:2230–2240

    Article  Google Scholar 

  • Asako Y, Faghri M (1987) Finite volume solutions for laminar flow and heat transfer in a corrugated duct. J Heat Transfer 109:627–634

    Article  Google Scholar 

  • Atkinson KN, Drakulic R, Heikal MR, Cowell IA (1998) Two and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers. Int J Heat Mass Transfer 41:4063–4080

    Article  MATH  Google Scholar 

  • Aziz A (1975) Periodic heat transfer in annular fins. ASME J Heat Transfer 97:302–303

    Article  Google Scholar 

  • Baek S, Lee C, Jeong S (2014) Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger. Cryogenics 60:49–69

    Article  Google Scholar 

  • Bhattacharya A, Mahajan R (2000) Finned metal foam heat sinks for electronics cooling in forced convection. In: Proc thirty-fourth national heat transfer conference, Pittsburgh, PA

    Google Scholar 

  • Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743

    Article  Google Scholar 

  • Chen CK, Chen CH (1990) Nonuniform porosity and non-Darcian effects on conjugate mixed convection heat transfer from a plate fin in porous media. Int J Heat Fluid Flow 11:65–71

    Article  Google Scholar 

  • Chen TY, Shu HT (2004) Flow structures and heat transfer characteristics in fan flows with and without delta-wing vortex generators. Exp Therm Fluid Sci 28:273–282

    Article  Google Scholar 

  • Chomdee S, Kiatsiriroat T (2006) Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int Commun Heat Mass Transfer 33:618–626

    Article  Google Scholar 

  • Choudhury C, Garg HP (1991) Design analysis of corrugated and flat plate solar air heaters. Renew Energy 1:595–607

    Article  Google Scholar 

  • Chu HS, Chen CK, Weng CI (1983) Transient response of circular pins. J Heat Transf 105(1):205–208

    Article  Google Scholar 

  • Chyu HK, Hsing YC, Natarajan V (1996) Convective heat transfer of cubic fin arrays in a narrow channel. ASME paper No. 96-GT-201

    Google Scholar 

  • Chyu MK (1990) Heat transfer and pressure drop for short pin-fin arrays with pin endwall. J Heat Transf 112:926–932

    Article  Google Scholar 

  • Chyu MK, Goldstein RJ (1991) Influence of an array of wall-mounted cylinders on the mass transfer from a flat surface. Int J Heat Mass Transfer 34(9):2175–2186

    Article  Google Scholar 

  • Cicfalo M, Stasiek J, Collins MW (1996) Investigation of flow and heat transfer in corrugated passages II numerical results. Int J Heat Mass Transfer 39:165–192

    Article  Google Scholar 

  • Comini G, Nonino C, Savino S (2003) Effect of aspect ratio on convection enhancement in wavy channels. Numer Heat Transfer Part A Appl 44(1):21–37

    Article  MATH  Google Scholar 

  • Cuta J (1998) Forced convection heat transfer in flat plate microchannel heat exchangers. ASHRAE Trans 104:2

    Google Scholar 

  • Dake T, Majdalani J (2009) Improving flow circulation in heat sinks using quadrupole vortices. In: Proceedings of the ASME. International PACK conference. American Society of Mechanical Engineers, San Francisco, CA

    Google Scholar 

  • DeJong NC, Jacobi AM (2003) Localized flow and heat transfer interactions in louvered fin arrays. Int J Heat Mass Transfer 46:443–445

    Article  Google Scholar 

  • Donahoo EE, Camci C, Kulkarni AK, Belegundu AD (2001) Determination of optimal row spacing for a staggered cross-pin array in a turbine blade cooling passage. J Enhanc Heat Transf 8(1):41–53

    Google Scholar 

  • Ebisu T (1999) Development of new concept air-cooled heat exchanger for energy conservation of air conditioning machine. In: Kakac S et al (eds) Heat transfer enhancement of heat exchangers. Kluwer Academic, Dordrecht, pp 601–620

    Chapter  Google Scholar 

  • Ergin S, Ota M, Yamaguchi H, Sakamoto M (1997) Analysis of periodically fully developed turbulent flow in a corrugated duct using various turbulent models and comparison with experiments. In: JSME centennial grand congress, int conj on fluid eng, Tokyo, Japan, pp 1527–1532

    Google Scholar 

  • Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26:1820–1829

    Article  Google Scholar 

  • Focke WW, Knibbe PG (1986) Flow visualization in parallel plate ducts with corrugated walls. J Fluid Mech 165:73–77

    Article  Google Scholar 

  • Focke WW, Zachariades J, Oliver I (1985) The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchanger. Int J Heat Mass Transfer 28:1469–1479

    Article  Google Scholar 

  • Fujii M, Seshimo Y, Yarnananaka G (1988) Heat transfer and pressure drop of the perforated surface heat exchanger with passage enlargement and contraction. Int J Heat Mass Transfer 31:135–142

    Article  Google Scholar 

  • Fujii M, Seshimo Y, Yoshida T (1991) Heat transfer and pressure drop of tube-fin heat exchanger with trapezoidal perforated fins. In: Lloyd JR, Kurosake Y (eds) Proc 1991 ASME-JSME joint thermal engineering conf, vol 4. ASME, NY, pp 355–360

    Google Scholar 

  • Gaiser G, Kottke V (1990) Effects of corrugation parameters on local and integral heat transfer in plate heat exchangers and regenerators. In: Heat transfer, vol 5. Hemisphere Publishing Corporation, New York, pp 85–90

    Google Scholar 

  • Goldstein LJ, Sparrow EM (1977) Heat/mass transfer characteristics for flow in a corrugated wall channel. J Heat Transfer 99:187–195

    Article  Google Scholar 

  • Gong L, Kota K, Tao W, Joshi Y (2011) Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J Heat Transfer 133(5):051702

    Article  Google Scholar 

  • Gschwind P, Regele A, Kottke V (1995) Sinusoidal wavy channels with Taylor-Gortler vortices. Exp Therm Fluid Sci 11:270–275

    Article  Google Scholar 

  • Hamaguchi K, Takahashi S, Miyabe H (1983) Heat transfer characteristics of a regenerator matrix (case of packed wire gauzes). Trans JSME 49B(445):2001–2009

    Article  Google Scholar 

  • Heggs PJ, Walton C (1999) Local heat transfer coefficients in corrugated plate heat exchanger channels with mixed inclination angles. In: IMeChE conf trans 6th UK national conf on heat transfer, pp 39–44

    Google Scholar 

  • Heikal MR, Drakulic R, Cowell TA (1999) Multi-louvered fin surfaces, in recent advances in analysis of heat transfer for fin type surfaces. In: Sunden B, Heggs PJ (eds) Computational mechanics, Billerica, MA, pp 277–293

    Google Scholar 

  • Hendricks JB, Nilles MJ, Calkins ME (1995) Heat transfer and flow friction in perforated plate heat exchangers. Exp Therm Fluid Sci 10(2):238–247

    Article  Google Scholar 

  • Henze M, von Wolfersdorf J (2011) Influence of approach flow conditions on heat transfer behind vortex generators. Int J Heat Mass Transfer 54:279–287

    Article  MATH  Google Scholar 

  • Henze M, von Wolfersdorf J, Weigand B, Dietz CF, Neumann SO (2011) Flow and heat transfer characteristics behind vortex generators – a benchmark dataset. Int J Heat Fluid Flow 32:318–328

    Article  Google Scholar 

  • Hessami MA (2002) Thermo-hydraulic performance of cross-corrugated plate heat exchangers. In: Heat transfer, proc 12th int heat transfer conf, vol 4, pp 393–398

    Google Scholar 

  • Holmes MH (1995) Introduction to perturbation methods. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Hotani S, Mori K, Maruta T, Suwa A (1977) Performance of a corrugated plate finned coil. Refrig 52:631–640

    Google Scholar 

  • Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013a) Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transfer 56:475–487

    Article  Google Scholar 

  • Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013b) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transfer 57:58–72

    Article  Google Scholar 

  • Hwang JJ, Su RJ, Tsai BJ (2000) Transient analysis of 2-D cylindrical pin fin with constant base heat flux and tip convective effects. J Enhanc Heat Transf 7(3):201–206

    Article  Google Scholar 

  • Islamoglu Y, Parmaksizoglu C (2003) The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl Therm Eng 23(8):979–987

    Article  Google Scholar 

  • Iwasaki H, Sasaki T, Ishizuka M (1994) Cooling performance of plate fins for multichip modules. In: Intersociety conf on thermal phenomena in electronic systems. IEEE, pp 144–147

    Google Scholar 

  • Iyengar M, Bar-Cohen A (2002) Least-energy optimization of forced convection plate fin heat sinks. In: Proc the 8th intersociety conf on thermal and thermomechanical phenomena in electronic systems, ITherm 2002, San Diego, CA, pp 792–799

    Google Scholar 

  • Jang JY, Chen LK (1997) Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. Int J Heat Mass Transf 40(16):3981–3990

    Article  Google Scholar 

  • Joardar A, Jacobi AM (2007) A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. J Heat Transfer 129:1156–1167

    Article  Google Scholar 

  • Jung J, Hwang G, Baek S, Jeong S, Rowe AM (2012) Partial flow compensation by transverse bypass configuration in multi-channel cryogenic compact heat exchanger. Cryogenics 52:19–26

    Article  Google Scholar 

  • Kajino M, Hiramatsu M (1987) Research and development of automotive heat exchangers. In: Yang WJ, Mori Y (eds) Heat transfer in high technology and power engineering. Hemisphere, Washington, DC, pp 420–432

    Google Scholar 

  • Kawamura K, Nakajima T, Matsushima H (2001) Influence of fan setting height on the cooling performance of a plate-fin-type heat sink with microprocessor. Heat Transfer Asian Res 30(6):512–520

    Article  Google Scholar 

  • Kays WM, London AL (1984) Compact hear exchangers, 3rd edn. McGraw-Hill, New Year

    Google Scholar 

  • Kelkar KM, Patankar SV (1987) Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins. J Heat Transfer 109:25–30

    Article  Google Scholar 

  • Kelkar KM, Patankar SV (1989) Numerical prediction of heat transfer and fluid flow in rectangular offset fin arrays. Numer Heat Transfer A 15:149–164

    Article  Google Scholar 

  • Khoshvaght Aliabadi M, Hormozi F, Hosseini Rad E (2014) New correlations for wavy plate-fin heat exchangers: different working fluids. Int J Numer Meth Heat Fluid Flow 24(5):1086–1108

    Article  Google Scholar 

  • Kim N-H, Byun HW (2012) Effect of inlet configuration on distribution of air-water annular flow in a header of a parallel flow heat exchanger. J Enhanc Heat Transf 19(3):271–292

    Article  Google Scholar 

  • Kim NH, Kim DY (2010) Two-phase refrigerant distribution in a parallel-flow heat exchanger. J Enhanc Heat Transf 17(1):59–75

    Article  Google Scholar 

  • Kim SY, Kuznetsov AV (2003) Optimization of pin-fin heat sinks using anisotropic local thermal nonequilibrium porous model in a jet impinging channel. Numer Heat Transfer Part A Appl 44(8):771–787

    Article  Google Scholar 

  • Kim SY, Paek JW, Kang BH (2000) Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. J Heat Transfer 122:572–578

    Article  Google Scholar 

  • Kirpikov VA, El’chinov VP (1988) The influence of the equivalent diameter on the effectiveness of plate-fin heat-transfer surfaces. Therm Eng 35(2):89–91

    Google Scholar 

  • Kirsch KL, Thole KA (2017) Heat transfer and pressure loss measurements in additively manufactured wavy microchannels. J Turbomach 139(1):011007

    Article  Google Scholar 

  • Klett J, Ott R, McMillan A (2000) Heat exchangers for heavy vehicles utilizing high thermal conductivity graphite foams. SAE paper 2000-01-2207, Warrendale, PA

    Google Scholar 

  • Kouidry F (1997) Etude des Ecoulements Turbuients Charges de Particules: Application a Lencrassment Pa.rticulaire des Echangeurs a Plagues Corruguees. In: PhD thesis. University Joseph Fourier Grenoble, France

    Google Scholar 

  • Kovalenko VO, Mushin LB, Orlov VK, Isfasman GY, Shevyakova SA (1980) Perforated-plate heat exchangers for cryogenic helium units. Chem Petrol Eng 16(7–8):406–407

    Article  Google Scholar 

  • Kreid DK, Parry HL, McGowen LJ, Johnson BM (1979) Performance of a plate fin air-cooled heat exchanger with deluged water augmentation. ASME 79-WA/ENER-1

    Google Scholar 

  • Lau SC, Kim YS, Han JC (1987) Local end wall heat/mass-transfer distributions in pin fin channels. J Thermophys Heat Transfer 1(4):365–372

    Article  Google Scholar 

  • Lee YN (1986) Heat transfer characteristics of canted-rib plate heat exchanger. In: Heat transfer. Hemisphere Publishing Corporation, Washington, DC, no. 6, pp 2817–2822

    Google Scholar 

  • Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transfer 48(9):1688–1704

    Article  Google Scholar 

  • Lee KS, Kim WS, Si JM (2001) Optimal shape and arrangement of staggered pins in the channel of a plate heat exchanger. Int J Heat Mass Transfer 44:3223–3231

    Article  MATH  Google Scholar 

  • Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transfer 47:4327–4338

    Article  Google Scholar 

  • Li HY, Chen KY (2005) Thermal-fluid characteristics of pin-fin heat sinks cooled by impinging jet. J Enhanc Heat Transf 12(2):189–202

    Article  Google Scholar 

  • Li HY, Chen CL, Chao SM, Liang GF (2013) Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int J Heat Mass Transfer 67:666–677

    Article  Google Scholar 

  • Li HY, Liao WR, Li TY, Chang YZ (2017) Application of vortex generators to heat transfer enhancement of a pin-fin heat sink. Int J Heat Mass Transfer 112:940–949

    Article  Google Scholar 

  • Li WZ, Yan YY, Shen S, Hai Y (1999) An investigation on heat exchanger performance of a new type of plate heat exchanger with dimples. In: IMeChE conf transactions, 6th UK national conf on heat trans, pp 19–25

    Google Scholar 

  • Lin WW, Lee DJ (1998) Second-law analysis on wavy plate fin-and-tube heat exchangers. J Heat Transfer 120(3):797–800

    Article  Google Scholar 

  • Lin WW, Lee DJ (2000) Second-law analysis on a flat plate-fin array under crossflow. Int Commun Heat Mass Transfer 27(2):179–190

    Article  Google Scholar 

  • Liu MX, Sheu WJ, Chiang SB, Wang CC (2007) PIV investigation of the flow maldistribution in a multi-channel cold plate subject to inlet locations. J Enhanc Heat Transf 14(1):65–76

    Article  Google Scholar 

  • Loehrke RI, Lane JC, Zelenka RL (1979) Heat transfer from interrupted plate surfaces. Technical Report HT-PP791, Mech Eng Department, Colorado State University

    Google Scholar 

  • London AL, Shah RK (1968) Offset rectangular plate-fin surfaces heat transfer and flow friction characteristics. ASME J Eng Power 90:218–228

    Article  Google Scholar 

  • Lu F, Yang J, Kwok DY (2004) Numerical and experimental studies on electrical potential distribution of pressure driven flow in parallel plate microchannels. In: Kandlikar SG (ed) Second international conference on microchannels and minichannels. ASME, ICMM2004-2416

    Google Scholar 

  • Mahmud S, Islam AS, Mamun MAH (2002) Separation characteristics of fluid flow inside two parallel plates with wavy surface. Int J Eng Sci 40(13):1495–1509

    Article  Google Scholar 

  • Maiti DK (2002) Heat transfer and flow friction characteristics of plate-fin heat exchanger surfaces – a numerical study, PhD thesis, IIT Kharagpur, India

    Google Scholar 

  • Majumdar P (2005) Computational methods for heat and mass transfer. Taylor & Francis, New York

    Google Scholar 

  • Manson SV (1950) Correlations of heat transfer data and of friction data for interrupted plate fins staggered in successive rows, NACA Tech. Note 2237. National Advisory Committee for Aeronautics, Washington, DC

    Google Scholar 

  • Mao J, Rooke S (1994) Transient analysis of extended surfaces with convective tip. Int Commun Heat Mass Transfer 21(1):85–94

    Article  Google Scholar 

  • Matsumoto R, Kikkawa S, Senda M, Suzuki M (2000) End wall heat transfer characteristics with a single oblique pin fin. J Enhanc Heat Transfer 7(3):167–184

    Article  Google Scholar 

  • Maveety JG, Jung HH (2002) Heat transfer from square pin-fin heat sinks using air impingement cooling. IEEE Trans Compon Packag Technol 25(3):459–469

    Article  Google Scholar 

  • McNab CA, Atkinson KN, Heikal MR, Taylor N (1998) Numerical modeling of heat transfer and fluid flow over herringbone corrugated fins, heat transfer 1998, proceedings of 11. Int Heat Transfer Conf 6:119–124

    Google Scholar 

  • Mercier P, Tochon P (1997) Analysis of turbulent flow and heat transfer in compact heat exchangers by pseudo direct numerical simulation. In: Shah RK (ed) Compact heat exchangers for process industries. Begell House, New York, pp 223–230

    Google Scholar 

  • Metwally HM, Manglik RM (2004) Enhanced heat transfer due to curvature- induced lateral vortices in laminar flows in sinusoidal corrugated plate channels. Int J Heat Mass Transfer 47:2283–2292

    Article  Google Scholar 

  • Metzger DE, Berry RA, Bronson JP (1982) Developing heat transfer in rectangular ducts with staggered arrays of short pin fins. J Heat Transf 104:700–706

    Article  Google Scholar 

  • Metzger DE, Fan CS, Haley SW (1984) Effects of pin shape and array orientation on heat transfer and pressure loss in pin-fin arrays. J Eng Gas Turbines Power 106:252–257

    Article  Google Scholar 

  • Metzger DE, Shepard WB, Haley SW (1986, June) Row resolved heat transfer variations in pin-fin arrays including effects of non-uniform arrays and flow convergence. In: ASME 1986 international gas turbine conference and exhibit. American Society of Mechanical Engineers, pp V004T09A015–V004T09A015

    Google Scholar 

  • Michallon E, Marvillet C, Lebouche M (1996) Thermal and hydraulic characteristics of plate-fin heat exchangers in single phase flow. In: Afgan N, Carvalho MG, Bar-Cohen A, Butterworth D, Roetzel W (eds) New dev in heat exchangers. Gordon and Breach Publishers, London, pp 351–362

    Google Scholar 

  • Mikulln EI, Shevich YA, Potapov VN (1979) Efficiency of perforated plate array heat exchangers. Chem Petrol Eng 15(5–6):351–355

    Article  Google Scholar 

  • Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transfer 53:3023–3029

    Article  Google Scholar 

  • Minakami K, Ishizuka M, Mochizuki S (1995) Performance evaluation of pin-fin heat sinks utilizing a local heating method. J Enhanc Heat Transf 2:17–22

    Article  Google Scholar 

  • Minakami K, Mochizuki S (1992) Heat transfer characteristics of pin-fins with in-line arrangement (effect of the pin pitch). Proc JSME 920-17:242

    Google Scholar 

  • Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1992) Visualization of flow mixing mechanisms in pin-fin arrays. In: Flow visualization. Springer, Berlin, Heidelberg, pp 504–508

    Chapter  Google Scholar 

  • Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1993a) Heat transfer characteristics of the pin-fin heat sink (mechanism and effect of turbulence in the pin array). In: International symposium on transport phenomena in thermal engineering, pp 67–72

    Google Scholar 

  • Minakami K, Mochizuki S, Murata A, Yagi Y, Iwasaki H (1993b) Heat transfer characteristics of pin-fins with in-line arrangement (1st report, effect of the pin pitch). Trans Jpn Soc Mech Eng Part B 59(567):3602–3609

    Article  Google Scholar 

  • Mithun Krishna PM, Deepu M, Shine SR (2018) Numerical investigation of wavy microchannels with rectangular cross section. J Enhanc Heat Transf 25(4–5):293–313

    Article  Google Scholar 

  • Mochizuki S, Yagi S (1975) Heat transfer and friction characteristics of strip fins. Int J Refrig 50:36–59

    Google Scholar 

  • Mochizuki S, Yagi Y, Yang WJ (1988) Flow pattern and turbulent intensity in stacks of interrupted parallel plate surfaces. Exp Therm Fluid Sci I:51–57

    Article  Google Scholar 

  • Mochizuki S, Yagi Y (1990) Performance evaluation of pin-fin heat exchangers by automated transient testing method. In: Heat Trans 1990, vol 3. Hemisphere Publishing Corporation, pp 217–212

    Google Scholar 

  • Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17

    Article  Google Scholar 

  • Mohammed H, Gunnasegaran P, Shuaib N (2011) Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transfer 38(1):63–68

    Article  Google Scholar 

  • Molki M, Yuen CM (1986) Effect of interwall spacing on heat transfer and pressure drop in a corrugated wall channel. Int J Heat Mass Transfer 29:987–997

    Article  Google Scholar 

  • Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43(7):631–651

    Article  Google Scholar 

  • Muley A, Borghese JB, White SL, Manglik RM (2006) Enhanced thermal-hydraulic performance of a wavy-plate-fin compact heat exchanger: effect of corrugation severity. In: ASME 2006 international mechanical engineering congress and exposition, pp 701–707

    Google Scholar 

  • Mullisen RS, Loehrke RI (1983) Enhanced heat transfer in parallel plate arrays. ASME. 83-Ht-43

    Google Scholar 

  • Naik S, Probert SD, Shilston MJ (1986) Maximizing the performances of flat-plate heat exchangers experiencing free or forced convection. Appl Energy 22:225–239

    Article  Google Scholar 

  • Nilles MJ, Calkins ME, Dingus ML, Hendricks JB (1995) Heat transfer and flow friction in perforated plate heat exchangers. Exp Therm Fluid Sci 11:238–247

    Article  Google Scholar 

  • Nunez MP, Polley GT (1999) Methodology for the design of multi-stream plate-fin heat exchangers. In: Sunden B, Heggs PJ (eds) Recent advances in analysis of heat transfer for fin type surfaces. Computational Mechanics, Billerica, MA, pp 277–293

    Google Scholar 

  • O’Brien JE, Sparrow EM (1982) Corrugated-duct heat transfer, pressure drop and flow visualization. J Heat Transfer 104:410–416

    Article  Google Scholar 

  • Okada K, Ono M, Tomimura T, Okuma T, Konno H, Ohtani S (1972) Design and heat transfer characteristics of new plate type heat exchanger. Heat Trans Jpn Res 1(1):90–95

    Google Scholar 

  • Onishi H, Inaoka K, Suzuki K (2001) A three dimensional unsteady numerical analysis for a plate-finned heat exchanger in the middle Reynolds number range. In: Shah RK, Deakin AW, Honda H, Rudy TM (eds) Proc of the third int conf on compact heat exchangers and enhancement technology for the process industries. Begell House Inc., New York, pp 9–16

    Google Scholar 

  • Oosthuizen PH, Garrett M, (2001) A numerical study of natural convective heat transfer from an inclined plate with a “wavy” surface. In: Proc of 2001 ASME int mech eng congress and exposition. ASME paper no IMECE2001/HTD-24112, New York, NY

    Google Scholar 

  • Oviedo-Tolentino F, Romero-M’endez R, Hern’andez-Guerrero A, Gir’on-Palomares B (2008) Experimental study of fluid flow in the entrance of a Sinusoidal Channel. Int J Heat Fluid Flow 29(5):1233–1239

    Article  Google Scholar 

  • Park K, Choi D, Lee K (2004) Optimum design of plate heat exchangers with staggered pin arrays. Numer Heat Transfer Part A 45:347–361

    Article  Google Scholar 

  • Park K, Rew KH, Kwon JT, Kim BS (2007) Optimal solutions of pin-fin type heat sinks for different fin shapes. J Enhanc Heat Transf 14(2):93–104

    Article  Google Scholar 

  • Patankar SV, Prakash C (1981) An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted plate passages. Int J Heat Mass Transfer 24:1801–1810

    Article  MATH  Google Scholar 

  • Peng Y (1983) Heat transfer and friction loss characteristics of pin fin cooling configurations. J Engg. for Gas Turbines and Power 106(1):246–251

    Article  Google Scholar 

  • Pesteei SM, Subbarao PMV, Agarwal RS (2005) Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng 25:1684–1696

    Article  Google Scholar 

  • Picon-Nuñez M, Polley GT, Torres-Reyes E, Gallegos-Muñoz A (1999) Surface selection and design of plate–fin heat exchangers. Appl Therm Eng 19:917–931

    Article  Google Scholar 

  • Prakash C, Lounsbury R (1986) Analysis of laminar fully developed flow in plate-fin passages: effect of fin shape. J Heat Transfer 108:693–697

    Article  Google Scholar 

  • Prakash C, Sparrow EM (1980) Natural convection heat transfer performance evaluations for discrete-(in-line or staggered) and continuous-plate arrays. Numer Heat Transfer 3(1):89–105

    Article  Google Scholar 

  • Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transfer 45(12):2549–2565

    Article  Google Scholar 

  • Ranganayakulu Ch, Sheik Ismail L, Vengudupathi C (2006) Uncertainties in estimation of Colburn (j) factor and Fanning friction (f) factor for offset strip fin and wavy fin compact heat exchanger surfaces. In: Mishra SC, Prasad BVSSS, Garimella SV (eds) Proceedings of the XVIII national and VII ISHMT – ASME heat and mass transfer conference, Guwahati India, pp 1096–1103

    Google Scholar 

  • Riddell RA (1966) Heat transfer and flow friction characteristics of a plate-fin type cross-flow heat exchanger with perforated fins. MS thesis in Mech Eng U.S. Naval Postgraduate School

    Google Scholar 

  • Rocha LAO, Saboya FEM, Vargas JVC (1997) A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers. Int J Heat Fluid Flow 18:247–252

    Article  Google Scholar 

  • Rodrigues R, Yanagihara JI (1999) Augmentation of heat transfer by longitudinal vortices in plate-fin heat exchanges. In: Proc of the 5th ASME/JSME thermal eng joint conference paper ATJE99-6407

    Google Scholar 

  • Rodriquez JI, Mills AF (1996) Heat transfer and flow friction characteristics of perforated-plate heat exchangers. Exp Heat Transfer 9(4):335–356

    Article  Google Scholar 

  • Ros C, Jallut C, Grillot JM, Amblard M (1995) A transient-state technique for the heat transfer coefficient measurement in a corrugated plate heat exchanger channel based on frequency response and residence time distribution. Int J Heat Mass Transfer 38:1317–1325

    Article  Google Scholar 

  • Rosaguti NR, Fletcher DF, Haynes BS (2006) Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section. Int J Heat Mass Transfer 49(17):2912–2923

    Article  MATH  Google Scholar 

  • Rosaguti NR, Fletcher DF, Haynes BS (2007) Low-Reynolds number heat transfer enhancement in sinusoidal channels. Chem Eng Sci 62(3):694–702

    Article  Google Scholar 

  • Rosenblad G, Kullendorf A (1975) Estimating heat transfer rates from mass transfer studies on plate heat exchanger surfaces. Wiirme Stoffubertrag 8:187–191

    Article  Google Scholar 

  • Rosman EC, CaraiLlescov P, Saboya FEM (1984) Performance of one-and two-row tube and plate fin heat exchangers. J Heat Transfer 106:627–632

    Article  Google Scholar 

  • Rostami J, Abbassi A, Saffar-Avval M (2015) Optimization of conjugate heat transfer in wavy walls microchannels. Appl Therm Eng 82:318–328

    Article  Google Scholar 

  • Rush T, Newell T, Jacobi A (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transfer 42(9):1541–1553

    Article  Google Scholar 

  • Saboya FE, Sparrow EM (1976) Transfer characteristics of two-row plate fin and tube heat exchanger configurations. Int J Heat Mass Transfer 19(1):41–49

    Article  Google Scholar 

  • Saha A (2008) Effect of the number of periodic module on flow and heat transfer in a periodic array of cubic pin-fins inside a channel. J Enhanc Heat Transf 15(3):243–260

    Article  Google Scholar 

  • Saha AK, Acharya S (2004) Unsteady flow and heat transfer in parallel plate heat exchangers with in-line and staggered arrays of posts. Numer Heat Transfer Part 45:101–133

    Article  Google Scholar 

  • Saniei N, Dini S (1993) Heat transfer characteristics in a wavy-walled channel. J Heat Transfer 115(3):788–792

    Article  Google Scholar 

  • Sasao K, Honma M, Nishihara A, Atarashi T (1999) Numerical analysis of impinging air flow and heat transfer in plate-fin type heat sinks. In: Proc of the Pacific rim/ASME int intersociety electronic and photonic packaging conf, Maui Hawaii, Inter PACK EEP, vol 26, no 1, pp 493–499

    Google Scholar 

  • Shah RK (1975) Perforated heat exchanger surfaces: prut 2-heat transfer and flow friction characteristics. ASME Paper 75-WA/HT-9, New York

    Google Scholar 

  • Shah RK, London AL (1978) Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. Academic Press, New York

    Google Scholar 

  • Shen J, Gu W, Zhang Y (1987) An investigation on the heat transfer augmentation and friction loss performances of plate-perforated fin surfaces. In: Wang BX (ed) Heat transfer science and technology. Hemisphere, Washington, DC, pp 798–804

    Google Scholar 

  • Shohtani H (1990) The experimental research on condensation of the plate-fin heat exchangers, using non-azeotropic refrigerant mixtures. In: Proceedings of the second international symposium on condensers and condensation, University of Bath, UK, Heat transfer and fluid flow service, pp 367–376

    Google Scholar 

  • Shwaish IK, Amon CH, Murthy JY (2002) Thermal/fluid performance evaluation of serrated plate fin heat sinks. In: Proc of the 8th intersociety conf on thermal and thermo-mech phenomena in electronic systems. ITherm, San Diego, CA, pp 267–275

    Google Scholar 

  • Shwaish IK, Murthy JY, Amon CH, Bains D (2001) Performance evaluation of serrated plate fins for under-carriage electronics cooling in transportation application. In: Proc ASME int mech eng congress and exposition, ASME, New York, paper no IMECE2001/HTD-24391

    Google Scholar 

  • Sheik Ismail L, Ranganayakulu C, Shah RK (2009) Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for offset and wavy fins. Int J Heat Mass Transf 52(17–18):3972–3983

    Article  Google Scholar 

  • Singh SK, Mishran M, Jha PK (2014) Nonuniformities in compact heat exchangers—scope for better energy utilization: a review. Renew Sustain Energy Rev 40:583–596

    Article  Google Scholar 

  • Sinha A, Raman KA, Chattopadhyay H, Biswas G (2013) Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers. Int J Heat Mass Transfer 57:202–214

    Article  Google Scholar 

  • Song R, Cui M, Liu J (2017) A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. Int J Heat Mass Transfer 115:695–705

    Article  Google Scholar 

  • Soodphakdee D, Behnia M, Copeland D (2000) A comparison of fin geometrics for heat sinks in laminar forced convection: Part I – Round elliptical and plate fins in staggered and inline configurations. Int J Microcirc Electron Packag 24(1):68–76

    Google Scholar 

  • Souidi N, Bontemps A (2001) Concurrent gas-liquid flow in plate-fin heat exchangers with plain and perforated fins. Int J Heat Fluid Flow 22(4):450–459

    Article  Google Scholar 

  • Sparrow EM, Baliga BR, Patankar SV (1977) Heat transfer and fluid flow analysis of interrupted wall channels with application to heat exchangers. J Heat Transfer 99:4–11

    Article  Google Scholar 

  • Sparrow EM, Hossfeld M (1984) Effect of rounding protruding edges on heat transfer and pressure drop in a duct. Int J Heat Mass Transfer 27:1715–1723

    Article  Google Scholar 

  • Stasiek J, Collins MW, Ciofalo M, Chew PE (1996) Investigation of flow and heat transfer in corrugated passages – I. Experimental results. Int J Heat Mass Transfer 39:149–164

    Article  Google Scholar 

  • Suga T, Aoki H (1991) Numerical study on heat transfer and pressure drop in multilouvered fins. In: Proc ASME/JSME joint thermal engineering conference, vol 4

    Google Scholar 

  • Suga K, Aoki H (1995) Numerical study on heat transfer and pressure drop in multilouvered fins. J Enhanc Heat Transfer 2(3):231–238

    Article  Google Scholar 

  • Suga K, Aoki H, Shinagawa T (1990) Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaid grids. JSME Int J Ser 2 33(1):122–127

    Google Scholar 

  • Sui Y, Lee P, Teo C (2011) An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. Int J Therm Sci 50(12):2473–2482

    Article  Google Scholar 

  • Sui Y, Teo C, Lee P, Chew Y, Shu C (2010) Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transfer 53(13–14):2760–2772

    Article  MATH  Google Scholar 

  • Sunden B (1999) Flow and heat transfer mechanisms in plate-frame heat exchangers. In: Kakac S (ed) Heat transfer enhancement of heat exchangers. Kluwer Academic, Dordrecht, pp 185–206

    Chapter  Google Scholar 

  • Suryanarayana NV (1975) Transient response of straight fins. J Heat Transfer 97(3):417–423

    Article  Google Scholar 

  • Suzuki K, Xi GN, Inaoka K, Hagiwara Y (1994) Mechanism of heat transfer enhancement due to self sustained oscillation for an in-line fin array. Int J Heat Mass Transfer 37(1):83–96

    Article  MATH  Google Scholar 

  • Tafti DK, Wang G, Lin W (2000) Flow transition in a multilouvered fin array. Int J Heat Mass Transfer 43:901–919

    Article  MATH  Google Scholar 

  • Tao YB, He YL, Huang J, Wu ZG, Tao WQ (2007a) Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. Int J Therm Sci 46:768–778

    Article  MATH  Google Scholar 

  • Tao YB, He YL, Wu ZG, Tao WQ (2007b) Numerical design of an efficient wavy fin surface based on the local heat transfer coefficient study. J Enhanc Heat Transf 14(4):315–332

    Article  Google Scholar 

  • Theoclitus G (1966) Heat transfer and flow-friction characteristics of nine pin-fin surfaces. J Heat Transfer 88:383–390

    Article  Google Scholar 

  • Thomas DG (1966) Forced convection mass transfer: Part III. Increased mass transfer from a flat plate caused by the wake from cylinders located near the edge of the boundary layer. AIChE 12:124–130

    Article  Google Scholar 

  • Tian LT, He YL, Lei YG, Tao WQ (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transfer 36:111–120

    Article  Google Scholar 

  • Tischenko ZV, Bondarenko VN (1983) Comparison of the efficiency of smooth-finned plate heat exchangers. Int Chem Eng 23(3):550–557

    Google Scholar 

  • Tishchenko ZV, Bondarenko VN, Golechek LI (1979) Heat transfer and pressure drop in gas-carrying ducts formed by smooth-finned plate-type heat- exchange surfaces. Heat Trans Sov Res 11(5):117–124

    Google Scholar 

  • Tolpadi AK, Kuehn TH (1984) Conjugate three-dimensional natural convection heat transfer from a horizontal cylinder with long transverse plate fins. Numer Heat Trans 7:319–141

    MATH  Google Scholar 

  • Torikoshi K, Kawabata K (1989) Heat transfer and flow friction characteristics of a mesh finned air-cooled heat exchanger. In: Figliola RS, Kaviany M, Ebadian MA (eds) Convection heat transfer and transport processes. ASME symp HTD, vol 116, pp 71–77

    Google Scholar 

  • Toyoshima S, Fukumoto H, Nakagawa Y, Sakamoto Y (1986) Numerical analysis on flow of plate-fin heat exchangers. In: Proceedings 246th lecture meeting of the Japan Society of Mechanical Engineers Kansai Branch, pp 864–871

    Google Scholar 

  • VanFossen GJ (1981, March) Heat transfer coefficients for staggered arrays of short pin fins. In: ASME 1981 international gas turbine conference and products show. American Society of Mechanical Engineers, pp V003T09A003–V003T09A003

    Google Scholar 

  • Wang YQ, Dong QW, Liu MS, Wang D (2009) Numerical study on plate-fin heat exchangers with plain fins and serrated fins at low Reynolds number. Chem Eng Technol 32(8):1219–1226

    Article  Google Scholar 

  • Wang CC, Fu WL, Chang CT (1997) Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Exp Therm Fluid Sci 14:147–186

    Article  Google Scholar 

  • Wang CC, Lo J, Lin YT, Wei CS (2002) Flow visualization of annular and delta winglet vortex generators in fin-and-tube heat exchanger application. Int J Heat Mass Transfer 45:3803–3815

    Article  Google Scholar 

  • Wang G, Vanka S (1995) Convective heat transfer in periodic wavy passages. Int J Heat Mass Transfer 38(17):3219–3230

    Article  MATH  Google Scholar 

  • Webb RL (1987) In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase heat transfer, vol 17. John Wiley, New York, pp 1–17.62, Chapter 17

    Google Scholar 

  • Webb RL, Trauger P (1991) The flow structure in the louver fin heat exchanger geometry. Exp Therm Fluid Sci 4:205–217

    Article  Google Scholar 

  • Wen J, Li K, Wang C, Zhang X, Wang S (2019) Optimization investigation on configuration parameters of sine wavy fin in plate-fin heat exchanger based on fluid structure interaction analysis. Int J Heat Mass Transfer 131:385–402

    Article  Google Scholar 

  • Wen J, Li Y, Zhou A, Zhang K (2006) An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger. Int J Heat Mass Transfer 49(9–10):1667–1678

    Article  Google Scholar 

  • Wen J, Yang HZ, Jian GP, Tong X, Li K, Wang SM (2016a) Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging meta model based on MOGA. Int J Heat Mass Transfer 98:29–39

    Article  Google Scholar 

  • Wen J, Yang H, Tong X, Li K, Wang S, Li Y (2016b) Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm. Int J Therm Sci 101:116–125

    Article  Google Scholar 

  • Wen J, Yang H, Tong X, Li K, Wang S, Li Y (2016c) Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Convers Manag 117:482–489

    Article  Google Scholar 

  • Wieting AR (1975) Empirical correlations for heat transfer and flow friction characteristics of rectangular offset fin heat exchangers. J Heat Transfer 97:488–490

    Article  Google Scholar 

  • Xi G, Hagiwara Y, Suzuki K (1995) Flow instability and augmented heat transfer of fin arrays. J Enhanc Heat Transf 2:23–32

    Article  Google Scholar 

  • Xi GN, Shah RK (1999) Numerical analysis of OSF heat transfer and flow friction characteristics. In: Mohamad AA, Sezai I (eds) Proc int conf computational heat and mass transfer. Eastern Mediterranean University Printing house, Eazimaguse, Cyprus, pp 75–87

    Google Scholar 

  • Xie G, Liu J, Liu Y, Sunden B, Zhang W (2013) Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling. J Electron Packag 135:021008–021011

    Article  Google Scholar 

  • Xu W, Min J (2004) Numerical predictions of fluid flow and heat transfer in corrugated channels. In: Proc intl symp on heat transfer enhancement and energy conservation, Guangzhou, China, vol 1, pp 714–721

    Google Scholar 

  • Xuan YM, Zhang HL, Ding R (2001) Heat transfer enhancement and flow visualization of wavy perforated plate-and-fin surface. In: Shah RK, Deakin AW, Honda H, Rudy TM (eds) Proc third international conference on compact heat exchangers and enhancement technology for the process industries. Begell House, New York, pp 215–222

    Google Scholar 

  • Yakushin AN (1977) Determination of optimal characteristics of finned/plate heat exchangers. Therm Eng 24(1):64–67

    Google Scholar 

  • Yang JW (1972) Periodic heat transfer in straight fins. J Heat Transfer 94(3):310–314

    Article  Google Scholar 

  • Yang LC, Asako Y, Yamaguchi Y, Faghri M (1995) Numerical prediction of transitional characteristics of flow and heat transfer in a corrugated duct in heat transfer in turbulent flows. ASME Symp Ser HTD 318:145–152

    Google Scholar 

  • Yang KS, Li SL, Chen IY, Chien KH, Hu R, Wang CC (2010) An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int J Heat Mass Transfer 53:5675–5681

    Article  Google Scholar 

  • Yang H, Wen J, Tong X, Li K, Wang S, Li Y (2016) Numerical investigation on configuration improvement of a plate-fin heat exchanger with perforated wing-panel header. J Enhanc Heat Transf 23(1):1–21

    Article  Google Scholar 

  • Yu X, Feng J, Feng Q, Wang Q (2005) Development of plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl Therm Eng 24:173–182

    Article  Google Scholar 

  • Yu D, Jeon W, Kim SJ (2017) Analytic solutions of the friction factor and the Nusselt number for the low-Reynolds number flow between two wavy plate fins. Int J Heat Mass Transfer 115:307–316

    Article  Google Scholar 

  • Zhang LW, Balachandar S, Tafti DK, Najjar FM (1997) Heat transfer enhancement mechanisms in inline and staggered parallel-plate fin heat exchangers. Int J Heat Mass Transfer 40:2307–2325

    Article  MATH  Google Scholar 

  • Zhang J, Kundu J, Manglik RM (2004) Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int J Heat Mass Transfer 47:1719–1730

    Article  Google Scholar 

  • Zhang LW, Tafti DK, Najjar FM, Balachandar S (1997) Computations of flow and heat transfer in parallel plate fin heat exchangers on the CM-5: effects of flow unsteadiness and three-dimensionality. Int J Heat Mass Transfer 40:1325–1341

    Article  MATH  Google Scholar 

  • Zhang Z, Yanzhong L (2003) CFD simulation on inlet configuration of plate-fin heat exchanger. Int J Cryogenic Eng 43:673–678

    Article  Google Scholar 

  • Zhou J, Hatami M, Song D, Jing D (2016) Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int J Heat Mass Transfer 103:715–724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Wavy Fin, 3D Corrugated Fin, Perforated Fin, Pin Fin, Wire Mesh, Metal Foam Fin, Packings, Numerical Simulation. In: Heat Transfer Enhancement in Plate and Fin Extended Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20736-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20736-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20738-0

  • Online ISBN: 978-3-030-20736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics