Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 533 Accesses

Abstract

This chapter has been dedicated to understand the basic concepts of vortex generators for heat transfer enhancement in plate-fin heat exchangers. The performance of transverse, longitudinal, and wing-type vortex generators has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed HE, Mohammed HA, Yusoff MZ (2012a) An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sust Energ Rev 16:5951–5993

    Article  Google Scholar 

  • Ahmed HE, Mohammed HA, Yusoff MZ (2012b) Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generators. Superlattice Microst 52:398–415

    Article  Google Scholar 

  • Althaher MA, Abdul-Rassol AA, Ahmed HE, Mohammed HA (2012) Turbulent heat transfer enhancement in a triangular duct using delta-winglet vortex generators. Heat Transfer Asian Res 41:43–62

    Article  Google Scholar 

  • Amon CH (1989) Numerical investigation of starting flow and supercritical heat transfer enhancement in grooved channels: understanding and exploitation. In: Proceedings of the 10th Brazil cong mech eng, Rio de Janeiro, pp 197–200

    Google Scholar 

  • Amon CH, Mikic BB (1989) Spectral element simulation of forced convective heat transfer. Application to slotted channel flow. In: National heat transfer conference, HTD, vol 110, pp 175–183

    Google Scholar 

  • Amon CH, Mikic BB (1990) Numerical prediction of convective heat transfer in self-sustained oscillatory flows. J Thermophys Heat Transfer 4(2):239–246

    Article  Google Scholar 

  • Aris MS, McGlen R, Owen I, Sutcliffe CJ (2011) An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl Therm Eng 31:2230–2240

    Article  Google Scholar 

  • Brockmeier U (1987) Numerisches Verfahren zur Berechnung dreidimensionaler Stromungs- und Temperaturfelder in Kanlilen mit Llingswirbelerzeugern und Untersuchung von Warmeiibergang und Stromungsverlust. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

  • Brockmeier U, Fiebig M, Güntermann T, Mitra NK (1989) Heat transfer enhancement in fin-plate heat exchangers by wing type vortex generators. Chem Eng Technol 12(1):288–294

    Article  Google Scholar 

  • Brockmeier U, Guntermann T, Fiebig M (1993) Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surface. Int J Heat Mass Transfer 36:2575–2587

    Article  Google Scholar 

  • Chen Y (1993) Numerische Untersuchungen von Lamellen-RohrWarmeiibertragerelementen unter Beriicksichtigung der Warmeleitung in den Lamellen. Diplomarbeit Nr. 93/12, Ruhr-Universitiit Bochum

    Google Scholar 

  • Chen TY, Shu HT (2004) Flow structures and heat transfer characteristics in fan flows with and without delta-wing vortex generators. Exp Thermal Fluid Sci 28:273–282

    Article  Google Scholar 

  • Chomdee S, Kiatsiriroat T (2006) Enhancement of air cooling in staggered array of electronic modules by integrating delta winglet vortex generators. Int Commun Heat Mass Transfer 33:618–626

    Article  Google Scholar 

  • Dake T, Majdalani J (2009) Improving flow circulation in heat sinks using quadrupole vortices. In: Proceedings of the ASME 2009 InterPACK conference. American Society of Mechanical Engineers, San Francisco, CA

    Google Scholar 

  • Dong Y (1989) Experimentelle Untersuchung der Wechselwirkungen von Liingswirbelerzeugern und Kreiszylindern in Kanalstromungen in Bezug aufWarmeiibergang und Stromungsverlust. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

  • Edwards FJ, Sherill N (1974) The improvement of forced surface heat transfer using surface protrusions in the form of cubes and vortex generators. In: Proceedings of the 5th international heat transfer conference, vol 2. Tokyo, pp 244–248

    Google Scholar 

  • Eibeck PA, Eaton JK (1987) Heat transfer effects of a longitudinal vortex embedded in a turbulent shear flow. J Heat Transfer 109:16–24

    Article  Google Scholar 

  • Ellouze A, Blancher S, Crelf R (1993) Flow structure and heat transfer in a wavy wall channel at steady and unsteady flow regime. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 30–35

    Google Scholar 

  • Esformes JL (1989) Ramp wing enhanced plate fin. U.S. patent 4,817, p 709

    Google Scholar 

  • Fiebig M (1995) Vortex generators for compact heat exchangers. J Enhanc Heat Transf 2:1–2

    Article  Google Scholar 

  • Fiebig M, Brockmeier U, Mitra NK, Gü Termann T (1989) Structure of velocity and temperature fields in laminar channel flows with longitudinal vortex generators. Numer Heat Transfer Appl 15(3):281–302

    Article  Google Scholar 

  • Fiebig M, Giintermann T (1989) Heat transfer enhancement by longitudinal vortex generators. In: Proceedings of the 10th Brazil cong mech eng, Rio de Janeiro, pp 445–448

    Google Scholar 

  • Fiebig M, Valencia A, Mitra NK (1993) Wing-type vortex generators for fin-and-tube heat exchangers. Exp Therm Fluid Sci 7(4):287–295

    Article  Google Scholar 

  • Fiebig M, Kallweit P, Mitra NK (1986) Wing type vortex generators for heat transfer enhancement. IHTC, vol 6, pp 2909–2913

    Google Scholar 

  • Fiebig M, Guntermann T (1993a) A class of high performance compact fin-plate heat exchanger elements. In: Lee JS, Chung SH, Kim KH (eds) The 6th Int symp on transport phenomena in thermal engineering, vol III. Korean Society of Mechanical Engineering, Seoul, pp 49–54

    Google Scholar 

  • Fiebig M, Guntermann T (1993b) Heat transfer surfaces with longitudinal vortex generators for compact plate heat exchangers. In: Proc 1st international thermal energy congress ITEC93, vol 1. Marakesch

    Google Scholar 

  • Fiebig M, Guntermann T, Mitra NK (1995) Numerical analysis of heat transfer and flow loss in a parallel plate heat exchanger element with longitudinal vortex generators as fins. J Heat Transfer 117(4):1064–1068

    Article  Google Scholar 

  • Ferrouillat S, Tochon P, Garnier C, Peerhossaini H (2006) Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity. Appl Therm Eng 26:1820–1829

    Article  Google Scholar 

  • Guntermann T (1992) Dreidimensionale stationare und selbsterregt-schwingende Stromungs- und Temperaturfelder in Hochleistungswiirmeiibertragern mit Wirbelerzeugern. Dissertation, RuhrUniversitat Bochum

    Google Scholar 

  • Greiner M, Chen RF, Witz RA (1989) Heat transfer augmentation through wall shape induced flow destabilization. In: National heat tranefer conference, HTD, vol 107

    Google Scholar 

  • Grosse-Gorgemann A, Weber D, Fiebig M (1993b) Numerical and experimental investigation of self-sustained oscillations in channels with periodic structures. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 42–50

    Google Scholar 

  • Grosse-Gorgemann A, Weber D, Fiebig M (1993c) Self-sustained oscillations: heat transfer and flow losses in Laminar channel flow with rectangular vortex generators. In: Proc Eurotherm 31 “Vortices and Heat Transfer”, Bochum, Germany, pp 107–111

    Google Scholar 

  • Henze M, von Wolfersdorf J, Weigand B, Dietz CF, Neumann SO (2011) Flow and heat transfer characteristics behind vortex generators – a benchmark dataset. Int J Heat Fluid Flow 32:318–328

    Article  Google Scholar 

  • Henze M, von Wolfersdorf J (2011) Influence of approach flow conditions on heat transfer behind vortex generators. Int J Heat Mass Transf 54:279–287

    Article  Google Scholar 

  • Herman CV, Mayinger F, Sekulic DP (1991) Experimental verification of oscillatory phenomena in heat transfer in a Communicating Channel geometry. Proc 2nd world conf on exp heat transf, Fluid mech and thermodynamics, June 23–28, Dubrovnik, Yugoslavia

    Google Scholar 

  • Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013a) Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators. Int J Heat Mass Transf 56:475–487

    Article  Google Scholar 

  • Huisseune H, T’Joen C, De Jaeger P, Ameel B, De Schampheleire S, De Paepe M (2013b) Influence of the louver and delta winglet geometry on the thermal hydraulic performance of a compound heat exchanger. Int J Heat Mass Transf 57:58–72

    Article  Google Scholar 

  • Joardar A, Jacobi AM (2007) A numerical study of flow and heat transfer enhancement using an array of delta-winglet vortex generators in a fin-and-tube heat exchanger. J Heat Transf 129:1156–1167

    Article  Google Scholar 

  • Kallweit P (1986) Liingswirbelerzeuger fiir den Einsatz in Lamellenwiirmetauschern. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

  • Kays WM, London AL (1984) Compact heat exchangers. 3rd Edition, McGraw-Hill, New York

    Google Scholar 

  • Kline SJ, McClintok F (1953) Describing uncertainty in single sample experiments. Mech Eng 75:3–8

    Google Scholar 

  • Kotcioglu I, Caliskan S (2008) Experimental investigation of a cross-flow heat exchanger with wing-type vortex generators. J Enhanc Heat Transf 15(2):113–127

    Article  Google Scholar 

  • Kotcioğlu İ, Ayhan T, Olgun H, Ayhan B (1998) Heat transfer and flow structure in a rectangular channel with wing-type vortex generator. Turk J Eng Environ Sci 22(3):185–196

    Google Scholar 

  • Lee GH (1979) Effect of vortex generators on the heat transfer from rectangular plate fins. The Lumus Company Limited, Heat Transfer Division, England, Report No. HR-159

    Google Scholar 

  • Lee KB, Kwon YK (1992) Flow and thermal field with relevance to heat transfer enhancement of interrupted-plate heat exchangers. Exp Heat Transfer 5:83–100

    Article  Google Scholar 

  • Leu JS, Wu YH, Jang JY (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf 47:4327–4338

    Article  Google Scholar 

  • Li HY, Chen CL, Chao SM, Liang GF (2013) Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int J Heat Mass Transf 67:666–677

    Article  Google Scholar 

  • Li HY, Liao WR, Li TY, Chang YZ (2017) Application of vortex generators to heat transfer enhancement of a pin-fin heat sink. Int J Heat Mass Transf 112:940–949

    Article  Google Scholar 

  • Mehta RD, Shabaka IM, Shibi A, Bradshaw P (1983) Longitudinal vortices imbedded in turbulent boundary layers. AIAA Paper, Albuquerque, NM

    Book  Google Scholar 

  • Milliat JP (1961) Experimental study of finned cans of the ‘herring-bone’ type. In: Int. j. Brit. nuclear energy conf., vol 6, Electricite de France, Chatou

    Google Scholar 

  • Min C, Qi C, Kong X, Dong J (2010) Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 53:3023–3029

    Article  Google Scholar 

  • Mullisen RS, Loehrke RI (1986) A study of the flow mechanisms responsible for heat transfer enhancement in interrupted-plate heat exchangers. J Heat Transfer 108:377–385

    Article  Google Scholar 

  • Oğulata RT, Doba F, Yilmaz T (2000) Irreversibility analysis of cross flow heat exchangers. Energy Convers Manag 41(15):1585–1599

    Article  Google Scholar 

  • Pang K, Tao WQ, Zhang HH (1990) Numerical analysis of fully developed fluid flow and heat transfer for arrays of interrupted plates positioned convergently-divergently along the flow direction. Numer Heat Transfer Part A 18:309–324

    Article  Google Scholar 

  • Patankar SV, Prakash C (1981) An analysis of the effect of plate thickness on laminar flow and heat transfer in interrupted plate passages. Int J Heat Mass Transfer 24:1801–1810

    Article  Google Scholar 

  • Pauley WR, Eaton JK (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J 26:816–823

    Article  Google Scholar 

  • Pescod D (1974) The effects of turbulence promoters on the performance of plate heat exchangers. In: Heat exchangers: design and theory sourcebook. Scripta Book Company, Washington, pp 601–616

    Google Scholar 

  • Pesteei SM, Subbarao PM, Agarwal RS (2005) Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Appl Therm Eng 25(11–12):1684–1696

    Article  Google Scholar 

  • Riemann K-A (1992) Wiirmeiibergang und Druckabfall in Kaniilen mit periodischen Wirbelerzeugern bei thermischem Anlauf. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

  • Russel CMB, Jones TV, Lee GH (1982) Heat transfer enhancement using vortex generators. In: Proceedings of the 7th international heat transfer conference, vol 3, pp 283–288

    Google Scholar 

  • Sahin B, Yakut K, Kotcioglu I, Celik C (2005) Optimum design parameters of a heat exchanger. Appl Energy 82(1):90–106

    Article  Google Scholar 

  • Sinha A, Raman KA, Chattopadhyay H, Biswas G (2013) Effects of different orientations of winglet arrays on the performance of plate-fin heat exchangers. Int J Heat Mass Transf 57:202–214

    Article  Google Scholar 

  • Tauscher R, Mayinger F (1997) Enhancement of heat transfer in a plate heat exchanger by turbulence promoters. In: Shah RK, Bell KJ, Mochizuki S, Wadekar VW (eds) Proc of the int conf on compact heat exchangers for the process industries. Begell House Inc., New York, pp 253–360

    Google Scholar 

  • Tian LT, He YL, Lei YG, Tao WQ (2009) Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transfer 36:111–120

    Article  Google Scholar 

  • Tiggelbeck S (1990) Experirnentelle Untersuchungen an Kanalstromungen mit Einzel- und Doppel-Wirbelerzeuger-Reihen fiir den Einsatz in kompakten Wiirmetauschem. Dissertation, RuhrUniversitiit Bochum

    Google Scholar 

  • Tiggelbeck T, Mitra NK, Fiebig M (1993) Experimental investigations of heat transfer and flow losses in a channel with double rows of longitudinal vortex generators. Int J Heat Mass Transf 36(9):2327–2337

    Article  Google Scholar 

  • Tiggelbeck S, Mitra NK, Fiebig M (1994) Comparison of wing-type vortex generators for heat transfer enhancement in channel flows. J Heat Transfer 116:880–885

    Article  Google Scholar 

  • Torii K, Nishina K, Nakayama K (1994) Mechanism of heat transfer augmentation by longitudinal vortices in a flat plate boundary layer. In: Heat transfer proc 10th int heat trans conf, vol 5, pp 123–128

    Google Scholar 

  • Valencia A (1993) Wiirmeiibergang und Druckverlust in LamellenRohr-Wiirmeiibertragern mil Liingswirbelerzeugern. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

  • Vasudevan R, Eswaran V, Biswas G (2000) Winglet-type vortex generators for plate-fin heat exchangers using triangular fins. Numer Heat Trans Part A 38(5):533

    Article  Google Scholar 

  • Wang CC, Lo J, Lin YT, Wei CS (2002) Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application. Int J Heat Mass Transf 45(18):3803–3815

    Article  Google Scholar 

  • Yakut K, Alemdaroglu N, Kotcioglu I, Celik C (2006) Experimental investigation of thermal resistance of a heat sink with hexagonal fins. Appl Therm Eng 26(17–18):2262–2271

    Article  Google Scholar 

  • Yang KS, Li SL, Chen IY, Chien KH, Hu R, Wang CC (2010a) An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. Int J Heat Mass Transf 53:5675–5681

    Article  Google Scholar 

  • Yang KS, Jhong JH, Lin YT, Chien KH, Wang CC (2010b) On the heat transfer characteristics of heat sinks: with and without vortex generators. IEEE Trans Compon Packag Technol 33:391–397

    Article  Google Scholar 

  • Zhang Z (1989) Einflu8 von Deltafugel-Wirbelerzeugem auf Wiirmeiibergang und Druckverlust in Spaltstromungen. Dissertation, Ruhr-Universitiit Bochum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Vortex Generators. In: Heat Transfer Enhancement in Plate and Fin Extended Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20736-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20736-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20738-0

  • Online ISBN: 978-3-030-20736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics