Skip to main content

Louver Fins and Convex Louver Fins

  • Chapter
  • First Online:
Heat Transfer Enhancement in Plate and Fin Extended Surfaces

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 525 Accesses

Abstract

The concepts of louvered fins and convex louvered fins have been briefed in this particular chapter. The effect of fin parameters on heat transfer and pressure drop characteristics has been discussed. The performance comparison of louvered fins with that of offset-strip fins has also been presented. The correlations developed for louvered fins by different researchers have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achaichia A, Cowell IA (1988) Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Exp Therm Fluid Sci 1:147–157

    Article  Google Scholar 

  • Aoki H, Shinagawa T, Suga K (1989) An experimental study of the local heat transfer characteristics in automotive louvered fins. Exp Therm Fluid Sci 2:293–300

    Article  Google Scholar 

  • Beecher DT, Fagan TJ (1987) Effects of fin pattern on the air-side heat transfer coefficient in plate finned-tube heat exchangers. ASHRAE Trans 93(2):1961–1984

    Google Scholar 

  • Bellows KD (1996) Flow visualization of louvered-fin heat exchangers. In: Master’s thesis. University of Illinois, Urbana, Champaign

    Google Scholar 

  • Burgess NK, Ligrani PM (2004) Effects of dimple depth on Nusselt numbers and friction factors for internal cooling in a channel. In: ASME turbo expo 2004: power for land, sea, and air. ASME, pp 989–998

    Google Scholar 

  • Chang YJ, Wang CC (1996) Air side performance of brazed aluminum heat exchangers. J Enhanc Heat Transf 3:15–28

    Article  Google Scholar 

  • Chang YJ, Wang CC (1997) A generalized heat transfer correlation for louver fin geometry. Int J Heat Mass Transfer 40:533–544

    Article  Google Scholar 

  • Chang YJ, Hsu KC, Lin YT, Wang CC (2000) A generalized friction correlation for louver fin geometry. Int J Heat Mass Transfer 43:2237–2243

    Article  Google Scholar 

  • Chyu MK, Yu Y, Ding H, Downs JP, Soechting FO (1997) Concavity enhanced heat transfer in an internal cooling passage. In: ASME 1997 international gas turbine and aeroengine congress and exhibition. ASME, pp. V003T09A080–V003T09A080

    Google Scholar 

  • Critoph RE, Holland MK, Turner L (1996) Contact resistance in air-cooled plate fin-tube air-conditioning condensers. Int J Refrig 19:400–406

    Article  Google Scholar 

  • Critoph RE, Holland MK, Fisher M (1999) Comparison of steady state and transient methods for measurement of local heat transfer in plate fin-tube heat exchangers using liquid crystal thermography with radiant heating. Int J Heat Mass Transfer 42:1–12

    Article  Google Scholar 

  • Davenport CJ (1980) Heat transfer and fluid flow in the louvered-fin heat exchanger. PhD thesis, Lanchester Polytechnic, Lanchester, UK

    Google Scholar 

  • Davenport CJ (1983a) Correlations for heat transfer and flow friction characteristics of louvered fin. In: Heat transfer Seattle, AIChE symposium, series no. 225(79):19–27

    Google Scholar 

  • Davenport CJ (1983b) Heat transfer and flow friction characteristics of louvered heat exchanger surfaces heat exchangers: theory and practice. In: Taborek J, Hewitt GF, Afgan N (eds) . Hemisphere, Washington, DC, pp 387–412

    Google Scholar 

  • DeJong NC, Jacobi AM (2003) Localized flow and heat transfer interactions in louvered-fin arrays. Int J Heat Mass Transfer 46(3):443–455

    Article  Google Scholar 

  • Dillen ER, Webb RL (1994) Rationally based heat transfer and friction correlations for the louver fin geometry. SAE Paper 940504, Warrendale, PA

    Google Scholar 

  • Eckels PW, Rabas TJ (1987) Dehumidification: on the correlation of wet and dry transport processes in plate finned-tube heat exchangers. J Heat Transfer 109:575–582

    Article  Google Scholar 

  • Ekkad SV, Nasir H (2003) Dimple enhanced heat transfer in high aspect ratio channels. J Enhanc Heat Transf 10(4):395–406

    Article  Google Scholar 

  • Elyyan MA, Tafti DK (2009) Flow and heat transfer characteristics of dimpled multilouvered fins. J Enhanc Heat Transf 16(1):43–60

    Article  Google Scholar 

  • Fujii M, Seshimo Y, Yarnananaka G (1988) Heat transfer and pressure drop of the perforated surface heat exchanger with passage enlargement and contraction. Int J Heat Mass Transfer 31:135–142

    Article  Google Scholar 

  • Fujikake K, Aoki H, Mitui H (1983) An apparatus for measuring the heat transfer coefficients of finned heat exchangers by use of a transient method. In: Proc Japan 20th symposium on heat transfer, pp 466–468

    Google Scholar 

  • Ha S, Kim C, Ahn S, Dreitser GA (1998) Condensate drainage characteristics of plate fin-and-tube heat exchanger. In: Heat exchangers for sustainable dev, Lisbon, Portugal, pp 423–430

    Google Scholar 

  • Hatada T, Senshu T (1984) Experimental study on heat transfer characteristics of convex louver fins for air conditioning heat exchangers. ASME paper 84-HT-74, New York

    Google Scholar 

  • Hitachi (1984) Chapter 5: Plate-and-fin extended surfaces. In: Hitachi high-performance heat transfer tubes cat no EA-500. Hitachi Cable Co., Tokyo, Japan, p 140

    Google Scholar 

  • Huang CH, Yuan IC, Ay H (2003) A three-dimensional inverse problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers. Int J Heat Mass Transfer 46:3629–3638

    Article  MATH  Google Scholar 

  • Joshi HM, Webb RL (1987) Prediction of heat transfer and friction in the offset-strip fin array. Int J Heat Mass Transfer 30:69–84

    Article  Google Scholar 

  • Kajino M, Hiramatsu M (1987) Research and development of automotive heat exchangers. In: Heat transfer in high technology and power engineering conference, pp 420–432

    Google Scholar 

  • Kayansayan N (1993) Heat transfer characterization of plate fin-tube heat exchangers. Heat Recov Syst CHP 13(1):67–68

    Article  Google Scholar 

  • Kays WM, Crawford ME (1980) Convective heat and mass transfer. McGraw-Hill, New York, p 151

    Google Scholar 

  • Kim J-Y, Song T-H (2003) Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results. Int J Heat Mass Transf 46:3051–3059

    Article  Google Scholar 

  • Kim NH, Yun JH, Webb RL (1997) Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers. J Heat Transfer 119(3):560–567

    Article  Google Scholar 

  • Kundu B, Das PK (1997) Optimum dimensions of plate fins for fin-tube heat exchangers. Int J Heat Fluid Flow 18:530–537

    Article  Google Scholar 

  • Kushida G, Yamashita H, Izumi R (1986) Fluid flow and heat transfer in a plate-fin and tube heat exchanger (analysis of heat transfer around a square cylinder situated between parallel plates). Bull JSME 29(258):4185–4191

    Article  Google Scholar 

  • Leu J-S, Wu Y-H, Jang J-Y (2004) Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int J Heat Mass Transf 47:4327–4338

    Article  Google Scholar 

  • Ligrani PM, Harrison JL, Mahmmod GI, Hill ML (2001) Flow structure due to dimple depressions on a channel surface. Phys Fluids 13(11):3442–3451

    Article  MATH  Google Scholar 

  • Lyman AC, Stephan RA, Thole KA, Zhang LW, Memory SB (2002) Scaling of heat transfer coefficients along louvered fins. Exp Therm Fluid Sci 26(5):547–563

    Article  Google Scholar 

  • Mahmood GI, Hill ML, Nelson DL, Ligrani PM, Moon HK, Glezer B (2001) Local heat transfer and flow structure on and above a dimpled surface in a channel. J Turbomach 123(1):115–123

    Article  Google Scholar 

  • Maltson JD, Wilcock D, Davenport CJ (1989) Comparative performance of rippled fin plate fin and tube heat exchangers. J Heat Transfer 111:21–28

    Article  Google Scholar 

  • McQuiston FC (1978) Correlation of heat, mass, and momentum transport coefficients for plate-fin-tube heat transfer for surfaces with staggered tube. ASHRAE Trans 54(1):294–309

    Google Scholar 

  • Michna GJ, Jacobi AM, Burton RL (2007) An experimental study of the friction factor and mass transfer performance of an offset-strip fin array at very high Reynolds numbers. J Heat Transfer 129(9):1134–1140

    Article  Google Scholar 

  • Moon HK, O’connell T, Glezer B (1999) Channel height effect on heat transfer and friction in a dimpled passage. In: ASME 1999 international gas turbine and aeroengine congress and exhibition. ASME, pp. V003T01A043–V003T01A043

    Google Scholar 

  • Muzychka YS, Kenway G (2009) A model for thermal-hydraulic characteristics of offset strip fin arrays for large Prandtl number liquids. J Enhanc Heat Transf 16(1):73–92

    Article  Google Scholar 

  • Muzychka YS, Yovanovich MM (2001) Modeling the f and j characteristics of the offset strip fin array. J Enhanc Heat Transf 8(4):261–277

    Article  Google Scholar 

  • Nacerbey M, Russell S, Baudoin B (2003) PIV visualizations of the flow structure upstream of the tubes in a two-row plate fin-and-tube heat exchanger. In: Shah RK, Deakin AW, Honda H, Rudy TM (eds) Proc of the fourth int conf on compact heat exchangers and enhancement technology for the process industries. Begell House Inc., New York, pp 63–68

    Google Scholar 

  • Pauley LL, Hodgson JE (1994) Flow visualization of convex louver fin arrays to determine maximum heat transfer conditions. Exp Therm Fluid Sci 9(1):53–60

    Article  Google Scholar 

  • Rich DG (1975) Effect of the number of tube rows on heat transfer performance of smooth plate fin-and-tube heat exchangers. ASHRAE Trans 81(1):307–319

    Google Scholar 

  • Rugh JP, Pearson JT, Ramadhyani S (1992) A study of a very compact heat exchanger used for passenger compartment heating in automobiles in compact heat exchangers for power and process industries. ASME Symp Ser HTD 201:15–24

    Google Scholar 

  • Saboya FEM, Sparrow EM (1974) Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations. J Heat Transfer 96:265–272

    Article  Google Scholar 

  • Saboya FEM, Sparrow EM (1976) Transfer characteristics of two-row plate fin and tube heat exchanger configurations. Int J Heat Mass Transf 19:41–49

    Article  Google Scholar 

  • Saboya FEM, Rosman EC, Carajilescov P (1984) Performance of one- and two-row tube and plate fin heat exchangers. J Heat Transfer 106:627–632

    Article  Google Scholar 

  • Sahnoun A, Webb RL (1992) Prediction of heat transfer and friction for the louver fin geometry. J Heat Transfer 114:893–900

    Article  Google Scholar 

  • Seshimo Y, Fujii M (1987) Heat transfer and friction performance of plate fin and tube heat exchangers at low Reynolds number (1st report: characteristic of single-row). Abstract Bull JSME 30:1688–1689

    Google Scholar 

  • Seshimo Y, Fujii M (1991) An experimental study on the performance of plate fin and tube heat exchangers at low Reynolds numbers. In: Proc of the ASME-JSME thermal eng joint conference, vol 4, pp 449–454

    Google Scholar 

  • Shah RK, Sekulic DP (2003) Fundamentals of heat exchanger design. John Wiley & Sons, New York

    Book  Google Scholar 

  • Shah RK, Webb RL (1982) Compact and enhanced heat exchangers. In: Taborek J, Hewitt GF, Afgan NH (eds) Heat exchangers: theory and practice. Hemisphere, Washington, DC, pp 425–468

    Google Scholar 

  • Suga K, Aoki H (1995) Numerical study on heat transfer and pressure drop in multilouvered fins. J Enhanc Heat Transf l(3):231–238

    Article  Google Scholar 

  • Suga T, Aoki H (1991) Numerical study on heat transfer and pressure drop in multilouvered fins. In: Proc ASME/JSME joint thermal engineering conference, vol 4

    Google Scholar 

  • Suga K, Aoki H, Shinagawa T (1990) Numerical analysis on two dimensional flow and heat transfer of louvered fins using overlaid grids. JSME Int J Ser II 33:122–127

    Google Scholar 

  • Sunden B, Svantesson J (1990) Thermal hydraulic performance of new multilouvered fins. In: Proc 9th int heat trans conf, vol 5, pp 91–96

    Google Scholar 

  • Suzuki K, Hirai E, Miyake T, Sato T (1985) Numerical and experimental studies on a two-dimensional model of an offset-strip-fin type compact heat exchanger used at low Reynolds number. Int J Heat Mass Transfer 28(4):823–836

    Article  Google Scholar 

  • Tafti DK (1999) Time-dependent calculation procedure for fully developed and developing flow and heat transfer in louvered fin geometries. Numer Heat Transfer Part A Appl 35(3):225–249

    Article  Google Scholar 

  • Tafti DK, Zhang X (2001) Geometry effects on flow transition in multilouvered fins–onset, propagation, and characteristic frequencies. Int J Heat Mass Transfer 44(22):4195–4210

    Article  MATH  Google Scholar 

  • Taler D (2004) Experimental determination of heat transfer and friction correlations for plate fin-and-tube heat exchangers. J Enhanc Heat Transf 11:183–204

    Article  Google Scholar 

  • Tanaka T, Itoh M, Kudoh M, Tomita A (1984) Improvement of compact heat exchangers with inclined louvered fins. Bull JSME 27(224):219–226

    Article  Google Scholar 

  • Tomoda T, Suzuki K (1988) A numerical study of heat transfer on compact heat exchanger (effect of fin shape). In: 25th national heat transfer symp. of Japan, pp 175–177

    Google Scholar 

  • Torikoshi K, Xi GN, Nakazawa Y, Asano H (1994) Flow and heat transfer performance of a plate fin-and-tube heat exchanger (1st report: effect of fin pitch). In: Heat trans proc of the 10th int heat trans conf, vol 4, pp 411–416

    Google Scholar 

  • Toyoshima S, Fukumoto H, Nakagawa Y, Sakamoto Y (1986) Numerical analysis on flow of plate-fin heat exchangers. In: Proceedings, 246th Lecture meeting of The Japan Society of Mechanical Engineers Kansai Branch, pp 864–1

    Google Scholar 

  • Tutar M, Akkoca A (2004) Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin-and-tube heat exchangers. Numer Heat Transfer Part A 46:301–321

    Article  Google Scholar 

  • Wang C-C, Lee C-J, Chang C-T, Lin S-P (1999) Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers. Int J Heat Mass Transf 42:1945–1956

    Article  Google Scholar 

  • Wang CC, Chang CT (1998) Heat and mass transfer for plate fin-and-tube heat exchangers with and without hydrophilic coating. Int J Heat Mass Transfer 41:3109–3120

    Article  Google Scholar 

  • Wang CC, Chang YJ, Hsieh YC, Lin YT (1996) Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins. Int J Refrig 19(4):223–230

    Article  Google Scholar 

  • Webb RL (1988) PSU unpublished data for five radiators

    Google Scholar 

  • Webb RL, Jung SH (1992) Air-side performance of enhanced brazed aluminum heat exchangers. ASHRAE Trans 98(2):391–401

    Google Scholar 

  • Webb RL, Trauger P (1991) How structure in the louvered fin heat exchanger geometry. Exp Therm Fluid Sci 4(2):205–217

    Article  Google Scholar 

  • Webb RL, Chang YJ, Wang CC (1995) Heat transfer and friction correlations for the louver fin geometry. In: IMechE symp C496/081/95

    Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New York

    Google Scholar 

  • Yamashita H, Kushida G, Izumi R (1987) Fluid flow and heat transfer in a plate-fin and tube heat exchanger (analysis of unsteady flow and heat transfer around a square cylinder situated between parallel plates. In: Proc of the 1987 ASME-JSME thermal eng joint conf, vol 4, pp 173–180

    Google Scholar 

  • Zhang X, Tafti DK (2001) Classification and effects of thermal wakes on heat transfer in multilouvered fins. Int J Heat Mass Transfer 44(13):2461–2473

    Article  MATH  Google Scholar 

  • Zhang X, Tafti DK (2003) Flow efficiency in multi-louvered fins. Int J Heat Mass Transfer 46:1737–1750

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Louver Fins and Convex Louver Fins. In: Heat Transfer Enhancement in Plate and Fin Extended Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20736-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20736-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20738-0

  • Online ISBN: 978-3-030-20736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics