Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 621 Accesses

Abstract

The details of plate-fin surface geometries have been presented in this chapter. Different designs of plate-fins used for compact heat exchangers have also been presented. The applications of plate-fin-extended surfaces for heat transfer enhancement in both single-phase and two-phase flows, as studied by researchers across the globe, have been discussed. The works carried out on the fouling of compact heat exchangers has also been dealt with in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Kariem AH, Fletcher LS (1999) Comparative analysis of heat transfer and pressure drop in plate heat exchangers. In: Proc of the 5th ASME/JSME thermal eng conf, San Diego, CA, AJTE99-6291

    Google Scholar 

  • Abu Madi M, Johns RA, Heikal MR (1998) Performance characteristics correlation for round tube and plate finned heat exchangers. Int J Refrig 21:507–517

    Article  Google Scholar 

  • Aldoss TK (2004) Using capsulated liquid metal fins for heat transfer enhancement. J Enhanc Heat Transf 11(2):151–160

    Article  Google Scholar 

  • Ali MM, Ramadhyani S (1992) Experiments on convective heat transfer in corrugated channels. Exp Heat Transfer 5:175–193

    Article  Google Scholar 

  • Aoki H, Shinagawa T, Suga K (1989) An experimental study of the local heat transfer characteristics in automotive louvered fins. Exp Therm Fluid Sci 2:293–300

    Article  Google Scholar 

  • Araid FF, Awad MM, El-hadik AA (1983) Heat transfer and hydrodynamic resistance in compacting plate heat exchanger type ‘divergent-convergent’ surfaces. ASME-JSME Therm Eng Joint Conf Proc 3:437–441

    Google Scholar 

  • Asano H, Takenaka N, Fujii T (2004) Flow characteristics of gas–liquid two- phase flow in plate heat exchanger: (visualization and void fraction measurement by neutron radiography). Exp Therm Fluid Sci 28:223–230

    Article  Google Scholar 

  • Asby MF, Evans AG, Fleck NA, Gibson LJ, Hatchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth & Heinemann, Boston

    Google Scholar 

  • Ay H, Jang J, Yeh J-N (2002) Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography. Int J Heat Mass Transfer 45:4069–4078

    Article  Google Scholar 

  • Ayub ZH (2003) Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transfer Eng 24(5):3–16

    Article  Google Scholar 

  • Bai X, Newell TA (2000) Two-phase flow characteristics in Chevron-style flat plate heat exchangers. In: Proc 2000 int refrigeration conf at Purdue, pp 87–94

    Google Scholar 

  • Bailey KM (1997) Plate heat exchangers: a compact heat exchanger technology. In: Proc int conf on compact heat exchangers for the process. Ind Begell House Inc., New York, pp 1–10

    Google Scholar 

  • Bansal B, Muller-Steinhagen H (1993) Crystallization fouling in plate heat exchangers. J Heat Transfer 115:584–591

    Article  Google Scholar 

  • Barker JJ (1958) The efficiency of the composite fins. Nucl Sci Eng 3:300–312

    Article  Google Scholar 

  • Barrow H, Sherwin K (1994) Theoretical investigation of the effect of fouling on the performance of a tube and plate fin heat exchanger. Heat Recov Syst CHP 14:1–5

    Article  Google Scholar 

  • Berndt T, Connell JW (1978) Plate heat exchangers for OTEC. In: Proc the fifth ocean thermal energy conversion conf, pp VI-288–VI-320

    Google Scholar 

  • Bhatt Bhattacharya A, Mahajan RL (2002) Finned metal foam heat sinks for electronics cooling in forced convection. J Electron Packag 124:155–163

    Article  Google Scholar 

  • Bowen BD, Epstein N (1979) Fine particle deposition in smooth parallel-plate channels. J Colloid Interface Sci 72(1):81–97

    Article  Google Scholar 

  • Brinkman R, Ramadhyani S, Incropera FP (1988) Enhancement of convective heat transfer from small heat sources to liquid coolants using strip fins. Exp Heat Transfer 1:315–330

    Article  Google Scholar 

  • Brockmeier U, Guntermann T, Fiebig M (1993) Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces. Int J Heat Mass Transfer 36:2575–2587

    Article  Google Scholar 

  • Calmidi VV, Mahajan RL (2000) Forced convection in high porosity metal foams. J Heat Transfer 122:557–565

    Article  Google Scholar 

  • Chang YJ, Wang CC (1996) Air side performance of brazed aluminum heat exchangers. J Enhanc Heat Transf 3:15–28

    Article  Google Scholar 

  • Charre O, Jurkowsk R, Bailly A, Maziani S, Altazin M (2003) General model for plate heat exchanger performance prediction. J Enhanc Heat Transf 10:181–186

    Google Scholar 

  • Cheng L, Xia G (2001) Characteristics of single-phase heat transfer and pressure drop in plate heat exchangers with and without PTFE coatings. In: Exp heat transfer, fluid mechanics, and thermodynamics (2001) Edzioni ETS, Pisa, Italy, pp 1815–1820

    Google Scholar 

  • Chiba T, Kinoshita T, Shinmura T, Aoki H, Nakajima Y (1998) New development of plate and fin evaporator. In: SAE int congress and exposition SAE 981179

    Google Scholar 

  • Chu HS, Weng CI, Chen CK (1983) Transient response of a composite straight fin. J Heat Transfer 105(2):307–311

    Article  Google Scholar 

  • Chung BT, Iyer JR (1993) Optimum design of longitudinal rectangular fins and cylindrical spines with variable heat transfer coefficient. Heat Transfer Eng 14(1):31–42

    Article  Google Scholar 

  • Claesson J, Simanic B (2003) Pressure drop and visualization of adiabatic R134a two-phase flow inside a Chevron type plate heat exchanger. In: Proc the 21st IIR int congress of refrigeration, Washington, DC, ICR 314

    Google Scholar 

  • Corberán JM, Melón MG (1998) Modelling of plate finned tube evaporators and condensers working with R134A. Int J Refrig 21:273–284

    Article  Google Scholar 

  • Creswick FA, Talbert SG, Bloemer JW (1964) Compact heat exchanger study. Battelle Memorial Institute Report, Columbus

    Book  Google Scholar 

  • Das PK, Ghosh I (2012) Thermal design of multistream plate fin heat exchangers—a state-of-the-art review. Heat Transfer Eng 33(4–5):284–300

    Article  Google Scholar 

  • Davenport CJ (1983) Heat transfer and flow friction characteristics of louvered heat exchanger surfaces. In: Taborek J, Hewitt GF, Afgan N (eds) Heat exchangers: theory and practice. Hemisphere Publishing, Washington, DC, pp 387–412

    Google Scholar 

  • Dong J, Chen J, Chen Z, Zhou Y, Zhang W (2007) Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers. Appl Therm Eng 27:2066–2073

    Article  Google Scholar 

  • Dović D, Palm B, Švaić S (2002) Basic single phase flow phenomena in Chevron type plate heat exchangers. Zero leaks – minimum charge, IIR/IIF, Stockholm, Sweden Paper H4

    Google Scholar 

  • Dovic D, Svaic S (2004) Experimental and numerical study of the flow and heat transfer in plate heat exchanger channels. In: Tenth international refrigeration and air conditioning conference at Purdue, R097

    Google Scholar 

  • Dubrovskii EV, Fedotva AL (1972) Investigation of heat exchanger surfaces with plate fins. Heat Transfer Sov Res 4:75–79

    Google Scholar 

  • Dubrovsky EV (1993) Highly effective plate-fin “heat exchanger surfaces: from conception to manufacturing”. In: Aerospace heat exchanger technology, pp 501–547

    Google Scholar 

  • Dubrovsky EV (1995) Experimental investigation of highly effective plate-fin heat exchanger surfaces. Exp Therm Fluid Sci 10(2):200–220

    Article  Google Scholar 

  • Eckert ER, Drake G (1959) Heat and mass transfer, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Edwards MF (1983) Heat transfer in plate heat exchangers at low Reynolds numbers in low Reynolds number flow heat exchangers. Hemisphere Publishing Corporation, Washington, DC, pp 933–947

    Google Scholar 

  • Edwards FJ, Henry TA, Hayward GL (1973) The characteristics of the tube and continuous plate fin type of compact heat exchanger. In: Conf on recent dev in compact high duty heat exchangers, Institution of Mech Eng, pp 53–61

    Google Scholar 

  • Feijoo L, Davis HT, Ramkrishna D (1979) Heat transfer in composite solids with heat generation. J Heat Transfer 101(1):137–143

    Article  Google Scholar 

  • Feldman A, Marvillet C, Lebouché M (2000) Nucleate and convective boiling in plate fin heat exchangers. Int J Heat Mass Transfer 43:3433–3442

    Article  Google Scholar 

  • Fiebig M, Valencia A, Mitra NK (1993) Wing-type vortex generators for fin-and- tube heat exchangers. Exp Therm Fluid Sci 7:287–295

    Article  Google Scholar 

  • Fletcher LS, Abdel-Kariem AH (1999) A comparative analysis of heat transfer and pressure drop in plate heat exchangers. In: Proc 5th ASME/JSME thermal eng joint conf, Paper ATJE99-6291

    Google Scholar 

  • Fujikake K, Aoki H, Mitui H (1983) An apparatus for measuring the heat transfer coefficients of finned heat exchangers by use of a transient method. In: Proc of Japan 20th symposium on heat transfer, pp 466–468

    Google Scholar 

  • Fukai J, Miyatake O (1991a) Laminar-flow heat transfer within parallel-plate channel with staggered baffles. Abstract Kagaku Kogaku Ronbun 17:325

    Google Scholar 

  • Fukai J, Miyatake O (1991b) Evaluation of heat transfer augmentation for laminar flow within parallel plate channel with staggered baffles. Abstract Kagaku Kogaku Ronbun 17:904

    Article  Google Scholar 

  • Galezha VB, Usyukin JP, Kan KD (1976) Boiling heat transfer with Freons in finned-plate heat exchangers. Heat Transfer Sov Res 8(3):103–110

    Google Scholar 

  • Goldstein LJ, Sparrow EM (1977) Heat/mass transfer characteristics for flow in a corrugated wall channel. J Heat Transfer 99:187–195

    Article  Google Scholar 

  • Gorobets V (2008) Influence of coatings on thermal characteristics and optimum sizes of fins. J Enhanc Heat Transf 15(1):65–80

    Article  Google Scholar 

  • Gudmundsson JS (1981) Particulater fouling. In: Fouling of heat transfer equipment, pp 357–387

    Google Scholar 

  • Guo K, Zhang N, Smith R (2015) Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers. Appl Therm Eng 78:491–499

    Article  Google Scholar 

  • Gut JAW, Pinto JM (2003) Modeling of plate heat exchangers with generalized configurations. Int J Heat Mass Transfer 46:2571–2585

    Article  Google Scholar 

  • Gut JAW, Pinto JM (2004) Optimal configuration design for plate heat exchangers. Int J Heat Mass Transfer 47:4833–4848

    Article  Google Scholar 

  • Hamaguchi K, Takahashi S, Miyabe H (1983) Heat transfer characteristics of a regenerator matrix (case of packed wire gauzes). Trans JSME 49B-445:2001–2009

    Article  Google Scholar 

  • Haseler L (1983) Performance calculation methods for multistream plate fin heat exchangers. In: Taborek J, Hewitt GF, Afgan N (eds) Heat exchangers—theory and practice. Hemisphere Publishing, New York, pp 495–506

    Google Scholar 

  • Hesselgreaves JE (2001) Compact heat exchangers: selection. In: Design and operation

    Google Scholar 

  • Hicksen DC (1999) Boiling and condensation heat transfer coefficients in a plate heat exchanger. In: IMeChE conf trans, 6th UK national conf on heat transfer, pp 133–139

    Google Scholar 

  • Hsieh YY, Lin TF (2002) Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. Int J Heat Mass Transfer 45:1033–1044

    Article  Google Scholar 

  • Huang SC, Chang YP (1980) Heat conduction in unsteady, periodic, and steady states in laminated composites. J Heat Transfer 102(4):742–748

    Article  Google Scholar 

  • Ismail LS, Velraj R, Ranganayakulu C (2010) Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers—a review. Renew Sust Energ Rev 14(1):478–485

    Article  Google Scholar 

  • Jokar A, Eckels SJ, Hosni MH (2004) Thermo-hydrodynamic of the evaporation of refrigerant R134A in brazed plate heat exchangers. In: ASME heat transfer/fluids engineering summer conference, HT-FED2004-56573

    Google Scholar 

  • Jonsson H, Moshfegh B (2000) Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks – influence of flow bypass. In: Kromann GB, Culham JR, Ramakrishna K (eds) Intersociety conf on thermal and thermomechanical phenomena in electronic systems, vol 1, pp 185–192

    Google Scholar 

  • Kameoka T, Nakamura K (1975) Investigation on convective heat transfer from finned plate surface, JSME, Transactions, vol. 41, no. 346, 1975–1976, p. 1878–1888.) Heat Transfer - Japanese Research, vol. 6, Jan.-Mar. 1977, p. 41–54. Translation

    Google Scholar 

  • Kanzaka M, Iwabuchi M, Aoki Y, Ueda S (1989) Study on heat transfer characteristics of pin finned plate type heat exchangers. AIChE Symp Ser 269(85):306

    Google Scholar 

  • Kays WM, London AL (1984) Compact hear exchangers, 3rd edn. McGraw-Hill, New Year

    Google Scholar 

  • Kedzierski MA (1997) Effect of inclination on the performance of a compact brazed plate condenser and evaporator. Heat Transfer Eng 18(3):25–38

    Article  Google Scholar 

  • Kedzierski M (1998) Effect of inclination/mal-distribution on the performance of a compact brazed plate condenser and evaporator. ASHRAE Trans 104:1

    Google Scholar 

  • Kern DQ, Kraus AD (1972) Extended surface heat transfer

    Google Scholar 

  • Kim SY, Paek JW, Kang BH (2000) Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. Heat Transfer 122:572–578

    Article  Google Scholar 

  • Kim NH, Yun JH, Webb RL (1997) Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers. J Heat Transfer 119(3):560–567

    Article  Google Scholar 

  • Klett J, Ott R, McMillan A (2000) Heat exchangers for heavy vehicles utilizing high thermal conductivity graphite foams. SAE Paper No. 2000-01-2207

    Google Scholar 

  • Koyama S, Yara T (1999) Heat transfer of binary Zeotropic mixtures in a plate-fin condenser. In: Proc int conf on compact heat exchangers and enhancement technology for the process ind, pp 423–430

    Google Scholar 

  • Koyama S, Yu J, Matsumoto T (1998) Approximate analysis for laminar film condensation of pure refrigerant on vertical finned surface. J Enhanc Heat Transf 5(3):191–200

    Article  Google Scholar 

  • Kraus AD (1988) Sixty-five years of extended surface technology (1922–1987). Appl Mech Rev 41(9):321–364

    Article  Google Scholar 

  • Laor K, Kalman H (1992) The effect of tip convection on the performance and optimum dimensions of cooling fins. Int Commun Heat Mass Transfer 19(4):569–584

    Article  Google Scholar 

  • Lee YN (1980) Technological advancement in all aluminum plate-type oil cooler. In: Compact heat exchangers – history, technological advancement and mechanical design problems HTD, ASME, vol 10, pp 145–152

    Google Scholar 

  • Legkiy VM, Babenko Y, Dikiy VA (1979) Heat transfer and drag of plate-type heat exchangers with hemispherical projections. Heat Transfer Sov Res 11(2):143–150

    Google Scholar 

  • Li Q, Flamant G, Yuan X et al (2011) Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers. Renew Sust Energ Rev 15(9):4855–4875

    Article  Google Scholar 

  • Liang CY, Yang WJ (1975) Heat transfer and friction loss performance of perforated heat exchanger surfaces. J Heat Transfer 97:9–15

    Article  Google Scholar 

  • London AL, Shah RK (1968) Offset rectangular plate-fin surfaces heat transfer and flow friction characteristics. ASME J Eng Power 90:218–228

    Article  Google Scholar 

  • Longo GA, Gasparella A, Sartori R (2003) Development of innovative plate heat exchangers for refrigeration application. In: Proc of the 21st IIR int congress of refrigeration, Washington, DC, ICR 62

    Google Scholar 

  • Longo GA, Gasparella A, Sartori R (2004a) Experimental heat transfer coefficients and pressure drop during refrigerant vaporization inside plate heat exchangers. In: Tenth international refrigeration and air conditioning conference at Purdue, R095

    Google Scholar 

  • Longo GA, Gasparella A, Sartori R (2004b) Experimental heat transfer coefficients during refrigerant vaporization and condensation inside herringbone-type plate heat exchangers with enhanced surfaces. Int J Heat Mass Transfer 47:4125–4136

    Article  Google Scholar 

  • Manglik RM (1996) Plate heat exchangers for process industry applications: enhanced thermal hydraulic characteristics of chevron plates. In: Manglik RM, Kraus AD (eds) Enhanced and multiphase heat trans. Begell House, New York, pp 267–276

    Google Scholar 

  • Marr YN (1990) Correlating data on heat transfer in plate-fin heat exchangers with short offset fins. Therm Eng 37:249–252

    Google Scholar 

  • Marriott J (1977) Performance of an Alfaflex plate heat exchanger. Chem Eng Prog 2:73–78

    Google Scholar 

  • Marsi MA, Cliffe KR (1996) A study of the deposition of fine particles in compact plate fin heat exchangers. J Enhanc Heat Transf 3:259–272

    Article  Google Scholar 

  • Marvillet C (1991) Welded plate heat exchangers as refrigerants dry-ex evaporators. Design and operation of heat exchangers. Springer-Verlag, Berlin, Germany, pp 265–268

    Google Scholar 

  • Masri MA, Cliffe KR (1996) A study of the deposition of fine particles in compact plate fin heat exchangers. J Enhanc Heat Transf 3(4):259–272

    Article  Google Scholar 

  • McNab GS, Meisen A (1973) Thermophoresis in liquids. J Colloid Interface Sci 44(2):339–346

    Article  Google Scholar 

  • Mennicke U (1972) The apparent overall heat transfer coefficient of plate heat exchangers. Waerme Stoffuebertragung 5:168–180

    Article  Google Scholar 

  • Metzner AB, Friend WL (1958) Theoretical analogies between heat, mass and momentum transfer and modifications for fluids of high Prandtl or Schmidt numbers. Can J Chem Eng 36(6):235–240

    Article  Google Scholar 

  • Mochizuki S, Yagi Y (1977) Heat transfer and friction characteristics of strip fins. Heat Transfer Jpn Res 6:36–59

    Google Scholar 

  • Mochizuki S, Yagi Y, Enomoto T (1979) Transient response of air-cooled plate-fin condensers. Refrigeration 54(624):835–843

    Google Scholar 

  • Molki M, Yuen CM (1986) Effect of interwall spacing on heat transfer and pressure drop in a corrugated wall channel. Int J Heat Mass Transfer 29:987–997

    Article  Google Scholar 

  • Muley A, Manglik RM (1997a) Enhanced heat transfer characteristics of single-phase flows in a plate heat exchanger with mixed Chevron plates. J Enhanc Heat Transf 4(3):187

    Article  Google Scholar 

  • Muley A, Manglik RM (1997b) Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates. In: Oosthuizen PH, Armaly BF, Chen TS, Pepper DW, Acharya S (eds) ASME proc of the 32nd national heat trans conf, HTD, vol 346, pp 69–76

    Google Scholar 

  • Newson IH, Bott TR, Hussain CI (1983) Studies of magnetite deposition from a flowing suspension. Chem Eng Commun 20(5–6):335–353

    Article  Google Scholar 

  • O’Brien JE, Sparrow EM (1982) Corrugated-duct heat transfer, pressure drop and flow visualization. J Heat Transfer 104:410–416

    Article  Google Scholar 

  • Ohadi MM, Salemi M, Dessiatoun S, Singh A (1995) EHD-enhanced pool boiling of r-123 in a parallel plate configuration. In: Fletcher LS Aihara T (eds) Proc of the ASME/JSME thermal eng joint conference, vol 2, pp 225–232

    Google Scholar 

  • Okada K, Ono M, Tomimura T, Okuma T, Konno H, Ohtani S (1972) Design and heat transfer characteristics of new plate type heat exchanger. Heat Trans Jpn Res 1(1):90–95

    Google Scholar 

  • Oshima T, Iuchi S (1974) Calculation method for cooler condensers with continuous plate finned tubes. Heat Trans Jpn Res 3(3):1–5

    Google Scholar 

  • Ouazia B (2001) Evaporation heat transfer and pressure drop of HFC-134a inside a plate heat exchanger. In: Aminemi NK, Toma O, Rudland R, Crain E (eds) Proc of the ASME process industries division paper, pp 115–124

    Google Scholar 

  • Paffenbarger J (1990) General computer analysis of multistream, plate-fin heat exchangers in compact heat exchangers: a festschrift for London AL. Hemisphere Publishing Corporation, Washington, DC, pp 727–746

    Google Scholar 

  • Panchal CB, Hillis DL, Thomas A (1983) Convective boiling of ammonia and Freon 22 in plate heat exchangers. ASME-JSME Therm Eng Joint Conf Proc 2:261–268

    Google Scholar 

  • Panitsidis H, Greham RD, Westwater JW (1975) Boiling of liquids in a compact plate-fin heat exchanger. Int J Heat Mass Transfer 18:37–42

    Article  Google Scholar 

  • Parker KO, Coombs, MG (1980) New developments in compact plate-fin heat exchangers. In: Compact heat exchangers history technological advancement and mechanical design problems, vol 10, pp 171–179

    Google Scholar 

  • Pauley WR, Eaton JK (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J 26:816–823

    Article  Google Scholar 

  • Peng XF, Peterson GP, Wang BX (1996) Flow boiling of binary mixtures in microchanneled plates. Int J Heat Mass Transfer 39:1257–1264

    Article  Google Scholar 

  • Prasad BS (1991) The performance prediction of multistream plate-fin heat exchangers based on stacking pattern. Heat Transfer Eng 12(4):58–70

    Article  Google Scholar 

  • Pritchard AM, Clarke RH, de Block MX (1992) Fouling of small passages in compact heat exchangers. In: Fouling mechanisms, theoretical and practical aspects, Eurotherm seminar, vol 23, pp 47–56

    Google Scholar 

  • Pucci PF, Howard CP, Piersall CH Jr (1967) The single blow transient testing technique for compact heat exchanger surfaces. J Eng Power 89:29–39

    Google Scholar 

  • Quazia B (2001) Evaporation heat transfer and pressure drop of hfc-134a inside a plate heat exchanger. In: Proc of 2001 ASME int mech eng congress and exposition PID-6, pp 115–123

    Google Scholar 

  • Raghavan VR, Murthy MS (1983) On the selection of fin profiles for OTEC plate-fin evaporators. Energy Convers Manag 23(4):193–199

    Article  Google Scholar 

  • Rao B, Das S (2004) Effect of flow distribution to the channels on the thermal performance of the multipass plate heat exchangers. Heat Transfer Eng 25(8):48–59

    Article  Google Scholar 

  • Robertson JM, Lovegrove PC (1980) Boiling heat transfer with Freon 11 in brazed-aluminum plate-fin heat exchangers. ASME paper no 80-HT-58

    Google Scholar 

  • Rosenblad G, Kullendorf A (1975) Estimating heat transfer rates from mass transfer studies on plate heat exchanger surfaces. Wiirme Stoffubertrag 8:187–191

    Article  Google Scholar 

  • Rovazhyanskiy LL, Atroshchenko VI, Kedrov MS (1977) Coefficients of heat transfer for condensation of low pressure steam in plate condensers with slot-like channels in a grid pattern. Heat Trans Sov Res 9(2):28–31

    Google Scholar 

  • Rupani A, Molki M, Ohadi M, Franca F (2002) Flow boiling of R-134a in a minichannel plate evaporator with augmented surface. Heat Trans Proc 12th Int Heat Trans Conf 4:279–284

    Google Scholar 

  • Rupani AP, Molki M, Ohandi MM, Franca FHR (2003) Enhanced flow boiling of r-134a in a minichannel plate evaporator. J Enhanc Heat Transf 10:1–8

    Article  Google Scholar 

  • Sarma PK, Chary SP, Rao VD (1989) Condensation of vertical plate fins of variable cross section-limiting solutions. Can J Chem Eng 67:937–941

    Article  Google Scholar 

  • Shah RK (1975a) Perforated heat exchanger studies. Part 1: Flow phenomena, noise and vibration. ASME Paper No. 75-WA/HT-8, ASME, New York

    Google Scholar 

  • Shah RK (1975b) Perforated heat exchanger studies. Part 2: Heat transfer and flow friction characteristics. ASME Paper 75-WA/HT-9, ASME, New York

    Google Scholar 

  • Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 28(12):1429–1435

    Article  Google Scholar 

  • Smith MC (1972) Performance analysis and model experiments for louvered fin evaporator core development. SAE Paper No. 720078

    Google Scholar 

  • Sohrabpour S, Razani A (1993) Optimization of convective fin with temperature-dependent thermal parameters. J Franklin Institute 330(1):37–49

    Article  MATH  Google Scholar 

  • Sparrow EM, Baliga RR, Patankar SV (1977) Heat transfer and fluid flow analysis of interrupted-wall channels, with application to heat exchangers. J Heat Transfer 99:4–11

    Article  Google Scholar 

  • Sparrow EM, Hossfeld M (1984) Effect of rounding protruding edges on heat transfer and pressure drop in a duct. Int J Heat Mass Transfer 27:1715–1723

    Article  Google Scholar 

  • Sparrow EM, Liu CH (1979) Heat transfer, pressure drop and performance relationships for inline, staggered, and continuous plate heat exchangers. Int J Heat Mass Transfer 22:1613–1625

    Article  Google Scholar 

  • Syed A (1991) The use of plate heat exchangers as evaporators and condensers in process refrigeration. In: Foumeny EA, Heggs PJ (eds) Heat trans eng design of heat exchangers. Ellis Horwood Limited, Hemel Hempstead, vol 1, no 10, pp 139–157

    Google Scholar 

  • Taler D (2001) Mathematical model and experimental study of a plate-fin-and-tube heat exchanger (in Polish). Arch Automot Eng 4:145–162

    Google Scholar 

  • Taler D (2004a) Determination of heat transfer correlations for plate-fin-and-tube heat exchangers. Heat Mass Transfer 40(10):809–822

    Article  Google Scholar 

  • Taler D (2004b) Experimental determination of heat transfer and friction correlations for plate fin-and-tube heat exchangers. J Enhanc Heat Transf 11(3):183–204

    Article  Google Scholar 

  • Talik AC, Fletcher LS, Anand NK, Swanson LW (1995a) Heat transfer and pressure drop characteristics of a plate heat exchanger using a propylene-glycol/water mixture as a working fluid. In: Sernas V, Boyd RB, Jensen MK (eds) Proc of the 30th national heat trans conf, HTD, vol 314, pp 83–88

    Google Scholar 

  • Talik AC, Swanson LW, Fletcher LS, Anand NK (1995b) Heat transfer and pressure drop characteristics of a plate heat exchanger. In: Proc of the ASME/JSME thermal eng joint conference, vol 4, pp 321–330

    Google Scholar 

  • Theoclitus G (1966) Heat transfer and flow-friction characteristics in nine pin-fin surfaces. J Heat Transfer 85:383–390

    Article  Google Scholar 

  • Thonon B, Grandgeorge S, Jallut C (1999) Effect of geometry and flow conditions on particulate fouling in plate heat exchangers. Heat Transfer Eng 20(3):12–24

    Article  Google Scholar 

  • Thonon B, Vidil R, Marvillet C (1995) Recent research and developments in plate heat exchangers. J Enhanc Heat Transf 2(1–2):149

    Article  Google Scholar 

  • Tiggelbeck S, Mitra NK, Fiebig M (1994) Comparison of wing-type vortex generators for heat transfer enhancement in channel flows. J Heat Transfer 116:880–885

    Article  Google Scholar 

  • Tishchenko ZV Bondarenko VN (1983) Comparison of the efficiency of smooth-finned plate heat exchangers. Int Chem Eng 23(3):550–557

    Google Scholar 

  • Torii K, Nishina K, Nakayama K (1994) Mechanism of heat transfer augmentation by longitudinal vortices in a flat plate boundary layer. In: Heat transfer proc 10th int heat trans conf, vol 5, pp 123–128

    Google Scholar 

  • Torikoshi K, Kawabata K (1989) Heat transfer and flow friction characteristics of a mesh finned air- cooled heat exchanger convection heat transfer and transport processes. In: Figliola RS, Kaviany M, Ebadian MA (eds) ASME symp, vol 116. ASME, New York, pp 71–77

    Google Scholar 

  • Turner CW, Lister DH (1991) A study of the deposition of silt onto the surface of type 304 stainless steel. Can J Chem Eng 69(1):203–211

    Article  Google Scholar 

  • Vasil’ev VY (2006) An experimental investigation into rational enhancement of convective heat transfer in rectangular interrupted ducts of plate-fin heat-transfer surfaces. Therm Eng 53(12):1006–1016

    Article  Google Scholar 

  • Vlasogiannis P, Karagiannis G, Argyropoulos P, Bontozoglou V (2002) Air-water two-phase flow and heat transfer in a plate heat exchanger. Int J Multiphase Flow 28:757–772

    Article  MATH  Google Scholar 

  • Wadekar VV, Robertson JM (1989) Two-phase pressure gradients in the vertical upflow boiling of cyclohexane in perforated plate-fin passages. AIChe Symp Ser 269(85):301–305

    Google Scholar 

  • Wang CC, Lee CJ, Chang CT, Chang YJ (1999) Some aspects of plate fin- and-tube heat exchangers: with and without louvers. J Enhanc Heat Transfer 6(5):357

    Article  Google Scholar 

  • Wang Z, Li Y, Zhao M (2015) Experimental investigation on the thermal performance of multi-stream plate-fin heat exchanger based on genetic algorithm layer pattern design. Int J Heat Mass Transfer 82:510–520

    Article  Google Scholar 

  • Wang Z, Li Y (2016) Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—a review. Renew Sust Energ Rev 53:500–514

    Article  Google Scholar 

  • Wang L, Sundén B (2001) Thermal performance analysis of multi-stream plate heat exchangers. Proc of the 35th National heat trans conf, ASME, New York, NY, paper no. NHTC2001–20052

    Google Scholar 

  • Wang L, Sundén B (2003) Optimal design of plate heat exchangers with and without pressure drop specifications. Appl Therm Eng 23:295–311

    Article  Google Scholar 

  • Wang LK, Sunden B, Yang QS (1999) Pressure drop analysis of steam condensation in a plate heat exchanger. Heat Transfer Eng 20(1):71–77

    Article  Google Scholar 

  • Wanniarachchi AS, Ratman U, Tilton BE, Dutta-Roy K (1995) Approximate correlations for chevron-type plate heat exchangers. In: Sernas V, Boyd RB, Jensen MK (eds) Proc of the 30th national heat trans conf, HTD, vol 314, pp 145–152

    Google Scholar 

  • Watel B, Thonon B (2001) An experimental study of convective boiling in a compact serrated plate-fin heat exchanger. J Enhanc Heat Transf 9(1):1–16

    Article  Google Scholar 

  • Webb RL (1987) In: Kakac S, Shah RK, Aung W (eds) Handbook of single-phase heat transfer, vol 17. John Wiley, New York, pp 1–17.62, Chapter 17

    Google Scholar 

  • Webb RL (1994) The flow structure in the louvered fin heat exchanger geometry. In: Alkidas AC (ed) Vehicle thermal management. SAE, pp 221–232

    Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New York

    Google Scholar 

  • Webb RL (2018) Compact heat exchangers. J Enhanc Heat Transf 25(1):1–59

    Article  Google Scholar 

  • Wellsandt S, Vamling, L (2000) Heat transfer of R-22 and alternatives in plate- type evaporator. In: Tree DR (ed) Proceedings of the 2000 international refrigeration conference at Purdue, pp 1161–1168

    Google Scholar 

  • Wong LT, Smith MC (1966) Airflow phenomena in the louvered-fin heat exchanger. SAE Paper No. 730237

    Google Scholar 

  • Yan YY, Lin TF (1999) Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. J Heat Transfer 121(1):118–127

    Article  Google Scholar 

  • Yan YY, Lio HC, Lin TF (1999) Condensation heat transfer and pressure drop of refrigerant r-134a in a plate heat exchanger. Int J Heat Mass Transfer 42:993–1006

    Article  Google Scholar 

  • Yeh RH (1994) Optimum spines with temperature dependent thermal parameters. Int J Heat Mass Transfer 37(13):1877–1884

    Article  Google Scholar 

  • Yeh RH (1997) Analysis of thermally optimized fin array in boiling liquids. Int J Heat Mass Transfer 40(5):1035–1044

    Article  MATH  Google Scholar 

  • Yeh RH (2001) Optimum finned surfaces with longitudinal rectangular fins. J Enhanc Heat Transf 8(4):279–289

    Article  Google Scholar 

  • Yeh RH, Liaw SP (1993) Optimum configuration of a fin for boiling heat transfer. J Franklin Institute 330(1):153–163

    Article  MATH  Google Scholar 

  • Zhang L, Qian Z, Deng J, Yin Y (2015) Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger. Heat Mass Transfer 51(9):1337–1353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Introduction. In: Heat Transfer Enhancement in Plate and Fin Extended Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20736-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20736-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20738-0

  • Online ISBN: 978-3-030-20736-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics