Skip to main content

Arsenic Transport, Metabolism, and Possible Mitigation Strategies in Plants

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Arsenic (As)-contaminated soil and groundwater lead to contamination of the food chain and pose serious risk to human health worldwide. Arsenic accumulation, particularly inorganic arsenic, in food crops leads to potential health problems including cancer in populations. Elucidation of the mechanisms for As transport and metabolism is a prerequisite to develop safer crops with reduced As levels and efficient phytoremediation methods. Arsenate is taken up by plants through the phosphate transporters and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) and plasma membrane intrinsic (PIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. Production of reactive oxygen species is induced by As exposure which can lead to the production of antioxidant metabolites and several enzymes involved in antioxidant defense. Nitrogen and sulfur assimilation pathways, oxidative carbon metabolism, and amino acid and protein relationships are also affected by As exposure. Plant-based remediation strategies either through natural or genetically modified plants for cleaning up of the As-contaminated sites is a cost-effective, green-clean technology that has been variously used for As containment. In the present chapter, the comprehensive knowledge generated in the area of arsenic transporters, its metabolism, and phytoremediation from contaminated soil has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304(1–2):277–289

    Article  CAS  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128(3):1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci 49:150–161

    Article  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteom 8(17):3561–3576

    Article  CAS  Google Scholar 

  • Akinbile CO, Haque AM (2012) Arsenic contamination in irrigation water for rice production in Bangladesh: a review. Trends Appl Sci Res 7(5):331

    Article  CAS  Google Scholar 

  • Andrewes P, Kitchin KT, Wallace K (2003) Dimethylarsine and trimethylarsine are potent genotoxins in vitro. Chem Res Toxicol 16(8):994–1003

    Article  CAS  PubMed  Google Scholar 

  • Asere TG, Verbeken K, Tessema DA, Fufa F, Stevens CV, Du Laing G (2017) Adsorption of As (III) versus As (V) from aqueous solutions by cerium-loaded volcanic rocks. Environ Sci Pollut Res 24(25):20446–20458

    Article  CAS  Google Scholar 

  • Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem J 85(2):297–300

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Schüssler MD, Jahn TP (2008a) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008b) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH)3 and Sb (OH)3 across membranes. BMC Biol 6(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45(6):917–929

    Article  CAS  PubMed  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. EMBO Rep 3(8):741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boshoff M, De Jonge M, Scheifler R, Bervoets L (2014) Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil–plant transfer models. Sci Total Environ 493:862–871

    Article  CAS  PubMed  Google Scholar 

  • Brackhage C, Huang JH, Schaller J, Elzinga EJ, Dudel EG (2014) Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci Rep 4:4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brima EI, Haris PI (2014) Arsenic removal from drinking water using different biomaterials and evaluation of a phytotechnology based filter. Int Res J Environ Sci 3(7):39–44

    CAS  Google Scholar 

  • Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, López MV, Lopez DL, Jean JS, Cornejo L, Macedo LF, Tenuta Filho A (2012) Arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106

    Article  CAS  PubMed  Google Scholar 

  • Burlo F, Guijarro I, Carbonell-Barrachina AA, Valero D, Martinez-Sanchez F (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 47(3):1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198(1):33–43

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina ÁA, Burló F, Valero D, López E, Martínez-Romero D, Martínez-Sánchez F (1999) Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. J Agric Food Chem 47(6):2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, del Puerto YL (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25(8):2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19(3):1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12(12):e1002009

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47(16):9355–9362

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ (2016) High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144:2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16(5):429–453

    Article  CAS  PubMed  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact 90(2):139–155

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103(14):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP (2016) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209(2):762–772

    Article  CAS  PubMed  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138(1):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174(2):311–321

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Liu W, Chen X, Hu Y, Zhu Y (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5(7):784–792

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141(4):1544–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández YT, Diaz O, Acuna E, Casanova M, Salazar O, Masaguer A (2016) Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert. Environ Monit Assess 188(4):235

    Article  PubMed  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francesconi KA., Kuehnelt D (2002) Arsenic compounds in the environment. In Environmental Chemistry of Arsenic, 2nd edition (Ed. W. T. Frankenberger, Jr) pp. 51–94 (Marcel Dekker Inc., New York)

    Google Scholar 

  • Francis OO, Xiang L, Alepu OE (2017) In-situ phytoremediation of arsenic from contaminated soil. Int J Waste Resour 7(1):1–5

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64(4):361–369

    Article  CAS  PubMed  Google Scholar 

  • George CM, Sima L, Arias M, Mihalic J, Cabrera LZ, Danz D, Checkley W, Gilman RH (2014) Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bull World Health Organ 92(8):565–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Nasar-Um-Minullah, Sharma I, Kazi AG et al (2016) Phytoextraction: the use of plants to remove heavy metals from soil. In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam, pp 385–409

    Chapter  Google Scholar 

  • Gonzaga MI, Santos JA, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63(1):90–101

    Article  CAS  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17(12):3500–3512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregus Z, Németi B (2005) The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Toxicol Sci 85(2):859–869

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199:309–313

    Article  PubMed  CAS  Google Scholar 

  • Hammond CM, Root RA, Maier RM, Chorover J (2018) Mechanisms of arsenic sequestration by Prosopis juliflora during the phytostabilization of metalliferous mine tailings. Environ Sci Technol 52(3):1156–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155(2):219–225

    Article  CAS  Google Scholar 

  • Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79(4):183–191

    Article  CAS  PubMed  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M (2016) An aquaporin PvTIP4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209(2):746–761

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds. Toxicol Appl Pharmaco 198(3):458–467

    Article  CAS  Google Scholar 

  • Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225(2):1848

    Article  CAS  Google Scholar 

  • Huang ZC, Chen TB, Lei M, Liu YR, Hu TD (2008) Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and-hypertolerant plants. Environ Sci Technol 42(14):5106–5111

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Akram M, Abbas G, Murtaza B, Shahid M, Shah NS, Bibi I, Niazi NK (2017) Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation 19(11):985–991

    Article  CAS  PubMed  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Lett 582(11):1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7(2):889–896

    Article  CAS  Google Scholar 

  • Jena S, Dey SK (2017) Heavy metals. Am J Environ Studies 1(1):48–60

    Google Scholar 

  • Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiol 156(3):1164–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Huang H, Sun GX, Zhao FJ, Zhu YG (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ Sci Technol 46(15):8090–8096

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107

    CAS  PubMed  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284(4):2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59(4):580–590

    Article  CAS  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31(3):213–219

    Article  CAS  Google Scholar 

  • King DJ, Doronila AI, Feenstra C, Baker AJ, Woodrow IE (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Koch I, Feldmann J, Wang L, Andrewes P, Reimer KJ, Cullen WR (1999) Arsenic in the meager creek hot springs environment, British Columbia, Canada. Sci Total Environ 236(1):101–117

    Article  CAS  PubMed  Google Scholar 

  • Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ Sci Technol 34(1):22–26

    Article  CAS  Google Scholar 

  • Kumar K, Mosa KA, Meselhy AG, Dhankher OP (2018) Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Indian J Plant Physiol 23(4):721–730

    Article  CAS  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Article  PubMed  PubMed Central  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45(12):1787–1797

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150(4):2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840(5):1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    Article  CAS  PubMed  Google Scholar 

  • Lindsay ER, Maathuis FJ (2016) Arabidopsis thaliana NIP7; 1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Lett 590(6):779–786

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152(4):2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Schat H, Bliek M, Chen Y, McGrath SP, George G, Salt DE, Zhao FJ (2012) Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for as detoxification and accumulation in plants. PLoS One 7(8):e42408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193(3):665–672

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105(29):9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139(2):175–183

    Article  CAS  Google Scholar 

  • Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011(2011):431287

    PubMed  PubMed Central  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Hoboken, p 358

    Chapter  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43

    Article  CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mines RO Jr (2014) Environmental engineering: principles and practice. Wiley, Chichester, p 4

    Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Shah MM, Shafqat MN (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37(12):1949–1956

    Article  Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H (2013) Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163(3):1396–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Mattusch J, Wennrich R (2017) Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 7:40522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21(6):1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110(Suppl 5):745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275(28):21149–21157

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840(5):1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP (2011) Arabidopsis Pht1; 5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156(3):1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19(8):3506–3515

    Article  CAS  Google Scholar 

  • Nigam S, Gopal K, Vankar PS (2013) Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Environ Sci Pollut Res 20(6):4000–4008

    Article  CAS  Google Scholar 

  • Nissen P, Benson AA (1982) Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54(4):446–450

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59(8):2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Phillips DJ (1990) Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat Toxicol 16(3):151–186

    Article  CAS  Google Scholar 

  • Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT, Forestier C, Peltier G (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88(11):1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122(4):1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40(16):5010–5014

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103(7):2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaghebeur M, Rengel Z (2003) The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132(3):1600–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134(3):1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168(3):551–558

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4(3):197–203

    Article  CAS  Google Scholar 

  • Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV (2002) Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol 15(5):692–698

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Kadohashi K, Maki T, Hasegawa H (2011) Transport of DMAA and MMAA into rice (Oryza sativa L.) roots. Environ Exp Bot 72(1):41–46

    Article  CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82(7):986–995

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B, Wu S, Sundaram S, Rivoal J, Srivastava M, Ma LQ (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62(6):845–857

    Article  CAS  PubMed  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P (2012) The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195(2):356–371

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66(13):1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Rofkar JR, Dwyer DF (2013) Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content. Int J Phytoremediation 15(6):561–572

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  PubMed  Google Scholar 

  • Rudin SM, Murray DW, Whitfeld TJ (2017) Retrospective analysis of heavy metal contamination in Rhode Island based on old and new herbarium specimens. Appl Plant Sci 5(1):1600108

    Article  Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and phytovolatilization of arsenic from as-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy 12, p 26

    Google Scholar 

  • Sánchez-Bermejo E, Castrillo G, Del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:ncomms 5617

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53(379):2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Schmöger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122(3):793–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyfferth AL, Webb SM, Andrews JC, Fendorf S (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44(21):8108–8113

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao F (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 1:01332

    Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39(4):629–642

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. In: Green technologies and environmental sustainability, pp 395–407

    Chapter  Google Scholar 

  • Sneller FE, Van Heerwaarden LM, Kraaijeveld-Smit FJ, Ten Bookum WM, Koevoets PL, Schat H, Verkleij JA (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144(2):223–232

    Article  CAS  Google Scholar 

  • Srivastava S, Dwivedi AK (2016) Phytoremediation of arsenic using leaves of Bambusa vulgaris (Schrad. ex JC Wendl.) Nakai. Int J Waste Resour 6:1–5

    Article  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56(415):1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G (2012) A constitutive expressed phosphate transporter, OsPht1; 1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159(4):1571–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011(2011):939161

    Google Scholar 

  • Tharmalingam S, Alhasawi A, Appanna VP, Appanna VD (2017) Decontamination of multiple-metal pollution by microbial systems. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press, Boca Raton, pp 151–172

    Chapter  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012a) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012b) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Srivastava S, Dwivedi AK (2016) Aloe vera (L.) Burm. F. a potential botanical tool for bioremediation of arsenic. Sch J Agric Vet Sci 3(7):480–482

    Google Scholar 

  • Van den Broeck K, Vandecasteele C (1998) Capillary electrophoresis for the speciation of arsenic. Microchim Acta 128(1–2):79–85

    Article  Google Scholar 

  • Vasudevan DM, Sreekumari S, Vaidyanathan K (2013) Textbook of biochemistry for medical students. JP Medical Ltd, London

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    Article  CAS  PubMed  Google Scholar 

  • Viktorova J, Jandova Z, Madlenakova M, Prouzova P, Bartunek V, Vrchotova B, Lovecka P, Musilova L, Macek T (2016) Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS One 11(12):e0167927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130(3):1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates phosphate transporter1; 1 expression in response to phosphate starvation. Plant Physiol 164(4):2020–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67(21):6051–6059

    Article  CAS  PubMed  Google Scholar 

  • Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique-a review. J Bioremed Biodegr 8(404):2

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30(5):685–700

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang R, Lilley RM (2002) Methylation of arsenic in vitro by cell extracts from bentgrass (Agrostis tenuis): effect of acute exposure of plants to arsenate. Funct Plant Biol 29(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157(1):498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176(3):590–599

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8(5):722–733

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215(3):1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Ye WL, Khan MA, McGrath SP, Zhao FJ (2011) Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut 159(12):3739–3743

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17(3):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hwang JU, Song WY, Martinoia E, Lee Y (2017) Identification of amino acid residues important for the arsenic resistance function of Arabidopsis ABCC1. FEBS Lett 591(4):656–666

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156(1):27–31

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181(4):777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zheng MZ, Li G, Sun GX, Shim H, Cai C (2013) Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 365(1–2):227–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KK acknowledges the financial assistance from Board of Research in Nuclear Sciences (37(1)/14/28/2016-BRNS), India. PS is thankful to DST-SERB Project no. ECR/2016/000888 and UGC-Start-up Grant no. F.4-5(107-FRP)/2014(BSR) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Gupta, D., Mosa, K.A., Ramamoorthy, K., Sharma, P. (2019). Arsenic Transport, Metabolism, and Possible Mitigation Strategies in Plants. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_8

Download citation

Publish with us

Policies and ethics