Skip to main content

Metabolome Modulation During Arsenic Stress in Plants

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Arsenic (As)-tainted agricultural land and drinking water is a global issue due to its extremely toxic and carcinogenic behavior for various life forms. Arsenic creates morphological disorder in plants by altering their physiology and metabolism. Recent solution culture and soil–plant system researches on As uptake and metabolism indicate that different forms of As exert toxicity in species-specific manner through inflection of diverse metabolites from crucial biological pathways. Various plant species adapt an array of genomic and proteomic approaches for As tolerance and detoxification which is manifested through stress-responsive metabolites. Eventually, the increased level of targeted metabolites during As stress plays a significant role for recovering the altered metabolism in plants. The review highlights the utility of modulated metabolites to understand their role for As tolerance and detoxification in As-stressed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethylarsonic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    Article  CAS  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P et al (2008) Transcriptional responses of Arabidopsis thaliana plants to As(V) stress. BMC Plant Biol 8:87–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I et al (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  • Ali W, Isner JC, Isayenkov SV et al (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, Ollas CD et al (2013) Metabolites as a tool to investigate a biotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Lepiniec L (2009) Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem 47:448–455

    Article  CAS  PubMed  Google Scholar 

  • Begum MC, Islam MS, Islam M et al (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  PubMed  Google Scholar 

  • Bertolero F, Pozzi G, Sabbioni E et al (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808

    Article  CAS  PubMed  Google Scholar 

  • Borrell A, Carbonell L, Farras R (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    Article  CAS  PubMed  Google Scholar 

  • Bustingorri C, Noriega G, Lavado RS et al (2017) Protective effect exerted by soil phosphorus on soybean subjected to arsenic and fluoride. Redox Rep 22:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan R, Awasthi S, Tripathi P et al (2017) Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotox Environ Safe 138:47–55

    Article  CAS  Google Scholar 

  • Cline DJ, Thorpe C, Schneider JP (2003) Effects of As(III) binding on alpha helical structure. J Am Chem Soc 125:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R et al (1992) Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Drewniak L, Maryan N, Lewandowski W et al (2012) The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ Pollut 162:190–201

    Article  CAS  PubMed  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL et al (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Duan GL, Zhou Y, Tong YP et al (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S et al (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P et al (2010) Effect of arsenate exposure on amino acids, mineral nutrient status and antioxidant in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, de Oliveira JA, Gusman GS et al (2013) Plant responses to arsenic: the role of nitric oxide. Water Air Soil Pollut 224:1660

    Article  CAS  Google Scholar 

  • Farooq MA, Gill RA, Islam F (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Plant Physiol 3:1–18

    Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Georgieva K, Yordanov I (1993) Temperature dependence of chlorophyll fluorescence parameters of pea seedlings. J Plant Physiol 142:151–155

    Article  CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gläser K, Kanawati B, Kubo T et al (2014) Exploring the arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  CAS  Google Scholar 

  • Gramss G (2012) Potential contributions of oxidoreductases from alfalfa plants to soil enzymology and biotechnology: a review. J Nat Sci Sustain Technol 6:169

    Google Scholar 

  • Gresser MJ (1981) ADP-arsenate formation by sub mitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983

    CAS  PubMed  Google Scholar 

  • Grill E, Mishra S, Srivastava S et al (2006) Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Heidelberg, pp 101–145

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A et al (2017) Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem M, Ansari A, Gill S (eds) Essential plant nutrients. Springer, Cham, pp 213–274

    Chapter  Google Scholar 

  • Hossain MF (2006) Arsenic contamination in Bangladesh – an overview. Agric Ecosyst Environ 113:1–16

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • Indriolo E, Na G, Ellis D et al (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Agency of Research and Cancer (2004) IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 84: some drinking-water disinfectants and contaminants, including arsenic. IARC, Vienna

    Google Scholar 

  • Islam FS, Gault AG, Boothman C et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  PubMed  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    Article  CAS  Google Scholar 

  • Jha A, Dubey R (2004) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  CAS  PubMed  Google Scholar 

  • Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343

    CAS  Google Scholar 

  • Kaur S, Singh HP, Batish DR et al (2012) Arsenic (As) inhibits radical emergence and elongation in Phaseolus aureus by altering starch-metabolizing enzymes vis-à-vis disruption of oxidative metabolism. Biol Trace Elem Res 146:360–368

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotox Environ Safe 72:626–634

    Article  CAS  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ 36:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dhankher O, Carreira L et al (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium sensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA et al (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:68–691

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Tamai K et al (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil 139:175–183

    Article  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S et al (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate tolerant Holcus lanatus. New Phytol 116:29–35

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F et al (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng XY, Qin J, Wang LH et al (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol 163:927–936

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD et al (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016) Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen 68:99–107

    Article  CAS  Google Scholar 

  • Mohan TC, Castrillo G, Navarro C et al (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation in Arabidopsis thaliana. Plant Physiol 171:1418–1426

    PubMed  PubMed Central  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizo’n E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int J Phytoremediation 10:47–60

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM et al (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558

    Article  PubMed  PubMed Central  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA et al (2008a) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Meher NM, Williams PN et al (2008b) Rice-arsenate interactions in hydroponics: a three-gene model for tolerance. J Exp Bot 59:2277–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Srivastava RK, Dubey R (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22:656–670

    Article  CAS  PubMed  Google Scholar 

  • PavlíK M, Pavlíková D, Staszková L et al (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox Environ Safe 73:1309–1313

    Article  CAS  Google Scholar 

  • Raab A, Ferreira K, Meharg AA, Feldmann J (2007) Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2006) Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 6:S156–S162

    Article  PubMed  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutr 40:2326–2335

    Article  CAS  Google Scholar 

  • Saxena I, Shekhawat G (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AC, Mattusch J, Reisser W et al (2005) Evaluation of the influence of arsenic species on the nitrogen metabolism of a model angiosperm: nasturtium, Tropaeolum majus. Appl Organometal Chem 19:590–599

    Article  CAS  Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoof RA, Yost LJ, Eickhoff J et al (1999) Market basket survey of inorganic arsenic in food. Food Chem Toxicol 37:839–836

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtle T, Walter I, Hartwig A (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair 2:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Shaibur MR, Kitajima N, Sugewara R et al (2008) Critical toxicity of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic Sorghum. Water Air Soil Pollut 191:279–292

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M et al (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S et al (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340

    PubMed  PubMed Central  Google Scholar 

  • Singh AP, Dixit G, Kumar A et al (2017) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in arabidopsis is mediated by two abcc-type phytochelatin transporters. Proc Nat Acad Sci 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souri Z, Karimi N, de Oliveira LM (2018) Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv, under interaction of arsenate and phosphate. Environ Technol 39:1316–1327

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (Lf.) Royle. Environ Sci Technol 43:6308–6313

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD et al (2007) Phytochelatins and antioxidants systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P et al (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–815

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Sinha P, Sharma YK (2017) Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. J Plant Nutr 40:298–306

    Article  CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Styblo M, Serves SV, Cullen WR et al (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kim TH, Komives EA et al (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M et al (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2013) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Thomas EW, Thomas LR (1979) Botany: a brief introduction to plant biology. Wiley, New York, pp 155–170

    Google Scholar 

  • Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  CAS  PubMed  Google Scholar 

  • Thorsen M, Lagniel G, Kristiansson E et al (2007) Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30:35–43

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Sarangi BK (2017) Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol Eng 100:211–218

    Article  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S et al (2012a) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotox Environ Safe 79:189–198

    Article  CAS  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S et al (2012b) Arsenomics: omics of arsenic metabolism in plants. Front Plant Physiol 3:1–14

    Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP et al (2013a) Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res 20:884–896

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP et al (2013b) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S et al (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Singh RP, Sharma YK (2015) Arsenite stress variably stimulates pro-oxidant enzymes, anatomical deformities, photosynthetic pigment reduction and antioxidants in arsenic tolerant and sensitive rice seedlings. Environ Toxic Chem 9999:1–10

    Google Scholar 

  • Tripathi P, Awasthi S, Chauhan R, Singh PK, Srivastava S, Tripathi RD (2017) Biochemical and molecular aspects of arsenic tolerance in plants. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, pp 471–486

    Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    Article  CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Wani S, Jan N, Wani TA et al (2017) Optimization of antioxidant activity and total polyphenols of dried apricot fruit extracts (Prunus armeniaca L.) using response surface methodology. J Saudi Soc Agric Sci 16:119–126

    Google Scholar 

  • Williams PN, Price AH, Hossain SA et al (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Ye Z, Li H et al (2012) Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J Experim Bot 63:2961–2970

    Article  CAS  Google Scholar 

  • Xu B, Yu JY, Xie T et al (2018) Brassinosteroids and iron plaque affect arsenic and cadmium uptake by rice seedlings grown in hydroponic solution. Biol Plant 62:362–368

    Article  CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    Article  CAS  PubMed  Google Scholar 

  • Zengin F (2015) Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress. J Environ Biol 36:249

    PubMed  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA et al (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Preeti Tripathi is thankful to SERB, New Delhi, for the award of DST (SERB) Young Scientist in the Year 2015. Dr. Rudra Deo Tripathi is thankful to the Council of Science and Industrial Research, New Delhi, for the award of Emeritus Scientist Scheme-21(0978/13/EMR-2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, P., Tripathi, R.D. (2019). Metabolome Modulation During Arsenic Stress in Plants. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_7

Download citation

Publish with us

Policies and ethics