Skip to main content

Heavy Metal Toxicity and Plant Productivity: Role of Metal Scavengers

  • Chapter
  • First Online:

Abstract

Plants must adapt themselves to the prevailing conditions for their survival, resulting in the acquisition of a wide range of metal tolerance mechanisms. Heavy metal-contaminated plants cause losses in crop production and risks for human health. To understand the responses of plants to heavy metal stress and the regulation of the enzymes and other compounds involved will indicate the basic events of the phytotoxicity caused by heavy metals. The development of plant manipulation techniques have helped considerably, particularly the use of transgenic plants, to gain more insight into the antioxidative responses induced by metals. However, upregulation of these mechanisms and biomolecules may depend on plant species, the level of their metal tolerance, metal type, and plant growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-4193-4

    Article  CAS  Google Scholar 

  • Alia PSP, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur- compounds, and plant stress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00210

  • Anjum SA, Ashraf U, Khan I, Tanveer M, Saleem MF, Wang LC (2016) Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water Air Soil Pollut. https://doi.org/10.1007/s11270-016-3013-x

  • Arora S, Saradhi PP (2002) Light induced enhancement in proline levels under stress is regulated by non-photosynthetic events. Biol Plant 45:629–632

    Article  CAS  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot. https://doi.org/10.3906/bot-1304-65

    Article  CAS  Google Scholar 

  • Bino RJ, DE Vos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol 166:427–438

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  Google Scholar 

  • Chenn X, Wang J, Shi Y, Zhao MQ, Chi GYI (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud 52:41–46

    Google Scholar 

  • Cho U, Seo N (2005) Oxidative stress on Arabidopsis thaliana exposed to cadmium is duo to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, Graaff E, Kunze R, Frommer WB (2004) The role of [δ]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell. https://doi.org/10.1105/tpc.104.023622

    Article  CAS  Google Scholar 

  • Dewir YH, Chakrabart D, Ali MB, Hahn EJ, Paeky KY (2006) Lipid peroxidation an antioxidant anzyme activities of Euphorbia milli hyperhydric shoots. Environ Exp Bot 58:93–99

    Article  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plant. https://doi.org/10.1111/j.1399-3054.2007.00920.x

    Article  CAS  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot. https://doi.org/10.1016/j.sajb.2015.11.006

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35:199–201

    Article  CAS  Google Scholar 

  • Genard H, Le Saos J, Hillard J, Tremolieres A, Boucaud J (1991) Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritime. Plant Physiol Biochem 29:421–427

    CAS  Google Scholar 

  • Giberti S, Funck D, Forlani G (2014) D1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol 202:911–919

    Article  CAS  Google Scholar 

  • Hanson AD, Scott NA (1980) Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves. Plant Physiol 66:342–348

    Article  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  CAS  Google Scholar 

  • Hernández LE, Sobrinho-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  Google Scholar 

  • Islam MM, Hoque A, Okuma E, Nasrin M, Banu A, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol. https://doi.org/10.1016/j.jplph.2009.04.002

    Article  CAS  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2015.1082032

    Article  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34:315–320

    Article  CAS  Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant. https://doi.org/10.1007/s10535-015-0549-3

    Article  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  CAS  Google Scholar 

  • Kumar M, Sugatha P, Hebbar KB (2014) Superoxide dismutase Isozymes and their heat stability in coconut (Cocos nucifera L.) leaves. Ann Biol (Hissar) 30:593–597

    Google Scholar 

  • Lefèvre I, Vogel-Mikuš K, Arčon I, Lutts S (2016) How do roots of the metal-resistant perennial bush Zygophyllumfabago cope with cadmium and zinc toxicities? Plant Soil 404:193–207

    Article  Google Scholar 

  • Li M, Wang GR, Li JY, Cao FB (2016) Foliar application of betaine alleviates cadmium toxicity in maize seedlings. Acta Physiol Plant. https://doi.org/10.1007/s11738-016-2116-8

  • Lou Y, Yang Y, Hu L, Liu H, Xu Q (2015) Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology. https://doi.org/10.1007/s10646-015-1508-7

    Article  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plans. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot:1–24. https://doi.org/10.1093/jxb/erq282

    Article  CAS  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2011) Glutathione. The Arabdopsis book, vol 9. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Paradisone BV, Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Esposito S, Ruiz JM (2015) Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-1893-9

  • Qin Q, Li X, Wu H, Zhang Y, Feng Q, Tai P (2013) Characterization of cadmium (108Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem. Chemosphere 93:2284–2288

    Article  CAS  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiologiae Plantarum 34:835–847

    Article  CAS  Google Scholar 

  • Sánchez E, López-Lefebre LR, García PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598

    Article  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    Article  CAS  Google Scholar 

  • Signorelli S, Coitin O, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem 118:37–47

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (1995) Biochemistry, 2ª edn. Wiley, New York, 1361p

    Google Scholar 

  • Xu J, Yin HX, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  Google Scholar 

  • Xu D, Chen Z, Sun K, Yan D, Yang M, Zhao Y (2013) Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicol Environ Saf 97:147–153

    Article  CAS  Google Scholar 

  • Zechman B (2014) Compartment-specific important of glutathione during abiotic stress. Front Plant Sci 5:566

    Article  Google Scholar 

  • Zhou Y, Ning X, Liao X, Lin M, Liu J, Wang J (2013) Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filterbag obtained from a Chinese steel plant. Ecotoxicol Environ Saf 95:130–136

    Article  CAS  Google Scholar 

  • Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, Labrousse P (2016a) Exogenous proline enhances growth, mineral uptake, antioxidant defence and reduces cadmium-induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng. https://doi.org/10.1016/j.ecoleng.2015.11.016

    Article  Google Scholar 

  • Zouari M, BenAhmed C, Zorrig W, Elloumi N, Rabhi M, Delmail D, BenRouina B, Labrousse P, BenAbdallah F (2016b) Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicol Environ Saf 128:195–205

    Article  CAS  Google Scholar 

  • Zouari M, Ahmed CB, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Abdallah FB, Rouina BB (2016c) Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defence system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicol Environ Saf 128:195–205. https://doi.org/10.1016/j.ecoenv.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry T (1999) Overexpression of glutathione synthetase in brassica juncea enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Gratão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gratão, P.L., Alves, L.R., Lima, L.W. (2019). Heavy Metal Toxicity and Plant Productivity: Role of Metal Scavengers. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_3

Download citation

Publish with us

Policies and ethics