Skip to main content

Disease Resistance in Wheat: Present Status and Future Prospects

  • Chapter
  • First Online:
Disease Resistance in Crop Plants

Abstract

Wheat is one of the most important cereal crops in the world. It is the main source of calories and protein for human consumption, especially in developing countries. Over 700 million tons of wheat is produced annually from around 215 million hectares of land worldwide. However, there is a continuous increase in demand for wheat owing to the rise in human population and changes in dietary habits resulting from rising economies in developing countries. Wheat has become an integral part of the daily diet in many developing countries, accounting for 20–60% of daily calorie intake; therefore, to meet the challenge of increasing demand, there is a continuous need to increase wheat yield and production. Recent reports have indicated that at least a 60% increase in wheat production will be required to meet the global demand for wheat by 2050. One of the major limiting factors in achieving increased yields is the yield losses caused by pests and diseases. Out of a documented list of 200 diseases and pests of wheat, about 50 have been considered significant in major wheat-growing regions of the world. Among these, fungal diseases rank the highest in causing considerable damage to wheat, thus hindering wheat production. Pathogenic fungi can be broadly classified as biotrophic or necrotrophic on the basis of their lifestyles. Rust pathogens and powdery mildews are classified as biotrophic, as they survive on living plants, whereas necrotrophs such as Fusarium head blight, Septoria tritici blotch, tan spot, spot blotch, Stagonospora nodorum blotch, and wheat blast can derive nutrition from dead tissue when live plants are not available. Overall, diseases and pests cause 13% actual losses in wheat. In the case of rust pathogens and powdery mildews, new races of these pathogens with new degrees of virulence continue to evolve, thus rendering resistance genes ineffective. Although populations of the pathogens that cause other nonrust diseases remain somewhat constant, there seems to be rather frequent evolution of rust races, largely due to their asexual or sexual modes of reproduction. Although race-specific genes have been deployed widely in breeding, this has resulted in frequent “boom and bust” cycles; therefore, deployment of combinations of race non-specific resistance genes is considered an alternative to enhance the durability of resistance. Overall, significant achievements in breeding resistant wheat cultivars have been made since the onset of the Green Revolution. However, there is still a need to explore and mobilize genetic diversity for disease resistance in modern wheat cultivars through use of advanced biotechnological interventions. Marker-assisted selection, genomic selection, and genome editing are promising tools. Continual emergence of new virulent races of pathogens should be monitored. A combination of molecular breeding and phenotypic evaluations is required for development of high-yielding wheat cultivars with resistance to multiple diseases. This chapter describes wheat diseases caused by biotrophic and necrotrophic fungi, the losses incurred, the current situation, and potential options for resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, Vallavieille-Pope CD (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathol 10:e1003903. https://doi.org/10.1371/journal.ppat.1003903

    Article  CAS  Google Scholar 

  • Anh VL, Anh NT, Tagle AG et al (2015) Rmg8, a new gene for resistance to triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Bansal U, Bariana H, Wong D, Randhawa M, Wicker T, Hayden M, Keller B (2014) Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor Appl Genet 127:1441–1448. https://doi.org/10.1007/s00122-014-2311-1

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS (2003) Breeding for disease resistance. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopedia of applied plant sciences. Academic, Harcourt, Amsterdam, pp 244–253

    Chapter  Google Scholar 

  • Bearchell SJ, Fraaije BA, Shaw MW, Fitt BDL (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc Natl Acad Sci U S A 102:5438–5442. https://doi.org/10.1073/pnas.0501596102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun HJ, Park RF, Cuddy WS, Yonow T (2015) Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 1:15132. https://doi.org/10.1038/nplants.2015.132

    Article  PubMed  Google Scholar 

  • Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542:145–146

    Article  CAS  PubMed  Google Scholar 

  • Bockus WW, Claasen MM (1992) Effects of crop rotation and residue management practices on severity of tan spot of winter wheat. Plant Dis 76:633–636

    Article  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DW, Proctor RH (eds) (2013) Fusarium: genomics, molecular and cellular biology. Caister Academic, Norfolk

    Google Scholar 

  • Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C (2015) Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 79:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerstmayr H, Adam G, Lemmens M (2012) Resistance to head blight caused by Fusarium spp. in wheat. In: Sharma I (ed) Disease resistance in wheat. CABI, Wallingford, pp 236–276

    Chapter  Google Scholar 

  • Chen X (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15:433–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Zhang Y, Bie T, Gao D, Zhang B (2012) Strategy of wheat breeding for scab resistance in China. In: Proceedings of the 4th International Symposium on Fusarium Head Blight, Nanjing, 23–26 Aug 2012

    Google Scholar 

  • Cheng P, Xu LS, Wang MN, See DR, Chen XM (2014) Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet 127:2267–2277

    Article  CAS  PubMed  Google Scholar 

  • Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR, Chauhan SVS (2003) Identification of a molecular marker linked to an Agropyrone longatum–derived gene Lr19 for leaf rust resistance in wheat. Plant Breed 122:204–208

    Article  CAS  Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, PtrToxA and PtrToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis–wheat interaction. New Phytol 187:911–919. https://doi.org/10.1111/j.1469-8137.2010.03362.x

    Article  CAS  PubMed  Google Scholar 

  • Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CABI, Wallingford, pp 84–119

    Chapter  Google Scholar 

  • Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J et al (2016) The 2NS translocation from Aegilops ventricosa confers resistance to the triticum pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis BC, Rajaram S, Gómez Macpherson H (eds) (2002) Bread wheat: improvement and production, FAO Plant Production and Protection Series, No. 30. FAO, Rome

    Google Scholar 

  • Dakouri A, McCallum BD, Radovanovic N, Cloutier S (2013) Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol Breed 32:663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedryver F, Jubier MF, Thouvenin J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835

    Article  CAS  PubMed  Google Scholar 

  • Dubin HJ, Duveiller E (2011) Fungal, bacterial and nematode diseases of wheat: breeding for resistance and other control measures. In: Bonjean AP, Angus WJ, Van Ginkel M (eds) The world wheat book: a history of wheat breeding, vol 2. Lavoisier, Paris, pp 1131–1181

    Google Scholar 

  • Duveiller E, Sharma RC (2012) Wheat resistance to spot blotch or foliar blight. In: Sharma I (ed) Disease resistance in wheat. CABI, Wallingford, pp 120–135

    Chapter  Google Scholar 

  • Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005) Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248–256

    Article  CAS  PubMed  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430

    Article  Google Scholar 

  • Duveiller E, Hodson D, Sonder K, von Tiedemann A (2011) An international perspective on wheat blast. Phytopathology 101:S220

    Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469

    Article  Google Scholar 

  • Dyck PL (1991) Genetics of adult-plant leaf rust resistance in ‘Chinese Spring’ and ‘Sturdy’ wheats. Crop Sci 31:309–311

    Article  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641. https://doi.org/10.3389/fpls.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Ma H, Hughes GR (2004) Genetics of resistance to Stagonospora nodorum blotch of hexaploid wheat. Crop Sci 44(6):2043–2048

    Article  Google Scholar 

  • Feuillet C, Messmer M, Schachermayr G, Keller B (1995) Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.). Mol Gen Genet 248:553–562

    Article  CAS  PubMed  Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2017) A review of plant diseases—a field perspective. Mol Plant Pathol 19:1523–1536. https://doi.org/10.1111/mpp.12618

    Article  PubMed  PubMed Central  Google Scholar 

  • Fones H, Gurr S (2015) The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Francki MG (2013) Improving Stagonospora nodorum resistance in wheat: a review. Crop Sci 53:355–365

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold J, Harder D, Townley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2:1

    CAS  Google Scholar 

  • Goodwin SB (2012) Resistance in wheat to Septoria diseases caused by Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria (Stagonospora) nodorum. In: Sharma I (ed) Disease resistance in wheat. CABI, Wallingford, pp 151–159

    Chapter  Google Scholar 

  • Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm HW, Wang H, Li A, Han F, Wang H, Kong L (2015) High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet 128:2301–2316

    Article  PubMed  CAS  Google Scholar 

  • Hare RA, McIntosh RA (1979) Genetic and cytogenetic studies of durable adult-plant resistances in ‘Hope’ and related cultivars to wheat rusts. Z Planzenzuchtung 83:350–367

    Google Scholar 

  • Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan CX, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher∗6/PI250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Hovmøller MS, Sørensen CK, Walter S, Justesen AF (2011) Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol 49:197–217

    Article  PubMed  CAS  Google Scholar 

  • Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K, Sommerfeldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C (2015) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65:402–411

    Article  Google Scholar 

  • Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO (2015) Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16:23. https://doi.org/10.1186/s13059-015-0590-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Espino J, Singh RP, German S, McCallum B, Park R, Chen WQ, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Article  Google Scholar 

  • Igarashi S, Utimada C, Igarashi L, Kazuma A, Lopes R (1986) Pyricularia sp. em trigo. I. Ocorrencia de Pyricularia sp. no Estado do Parana. Fitopatol Bras 11:351–352

    Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, Nhani Junior A, Castroagudin VL, Reges JTA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84. https://doi.org/10.1186/s12915-016-0309-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099. https://doi.org/10.1094/PDIS-91-9-1096

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 with race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926. https://doi.org/10.1094/PDIS-92-6-0923

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Szabo LJ, Rouse MN, Fetch T Jr, Pretorus ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370. https://doi.org/10.1094/PDIS-93-4-0367

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (1988) Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico DF, pp 63–75

    Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1:14011. https://doi.org/10.1038/nplants.2014.11

    Article  PubMed  Google Scholar 

  • Kohli MM, Diaz de Ackermann M (2013) Resistance to Fusarium head blight in South American wheat germplasm. In: Alconada Magliano TM, Chulze SN (eds) Fusarium head blight in Latin America. Springer, New York, pp 263–297

    Chapter  Google Scholar 

  • Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE (2011) Pyricularia blast: a threat to wheat cultivation. Czech J Genet Plant Breed 47:S130–S134

    Article  Google Scholar 

  • Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449

    Article  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363. https://doi.org/10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Roder MS, Tripathi SB, Kumar S, Chand R, Joshi AK, Kumar U (2015) Mendelization and fine mapping of a bread wheat spot blotch disease resistance QTL. Mol Breed 35:218. https://doi.org/10.1007/s11032-015-0411-5

    Article  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  CAS  PubMed  Google Scholar 

  • Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111

    Article  PubMed  Google Scholar 

  • Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, Bueno-Sancho V, Corredor-Moreno P, Harrington SA, Kangara N, Berlin A, García R, Germán SE, Hanzalová A, Hodson DP, Hovmøller MS, Huerta-Espino J, Imtiaz M, Mirza JI, Justesen AF, Niks RE, Omrani A, Patpour M, Pretorius ZA, Roohparvar R, Sela H, Singh RP, Steffenson B, Visser B, Fenwick PM, Thomas J, Wulff BBH, Saunders DGO (2018) Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol 1:13. https://doi.org/10.1038/s42003-018-0013-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013) Putative Thinopyrum intermedium–derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JC (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lu P, Liang Y, Li D, Wang Z, Li W, Wang G, Wang Y, Zhou S, Wu Q, Xie J, Zhang D, Chen Y, Li M, Zhang Y, Sun Q, Han C, Liu Z (2015) Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). Theor Appl Genet 129:577–589

    Article  CAS  Google Scholar 

  • Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GL, Lagudah ES, Ellis GJ (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis G (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, Dundas I (2013) Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet 126:2943–2955

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo M-C, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Dolezel J, Berges H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 reveals a rich diversity at a cereal disease resistance locus. Nat Plants 1:15186. https://doi.org/10.1038/nplants.2015.186

    Article  CAS  PubMed  Google Scholar 

  • Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C (2018) BED-domain containing immune receptors confer 2 diverse resistance spectra to yellow rust. Nat Plants 4:662. https://doi.org/10.1038/s41477-018-0236-4

    Article  CAS  PubMed  Google Scholar 

  • May WE, Fernandez MR, Selles F, Lafond GP (2014) Agronomic practices to reduce leaf spotting and Fusarium kernel infections in durum wheat on the Canadian prairies. Can J Plant Sci 94:141–152

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (eds) (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Melbourne

    Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2016) Catalogue of gene symbols for wheat: 2015–16 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Stanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  PubMed  Google Scholar 

  • Mehta YR (2014) Wheat diseases and their management. Springer, New York, p 256

    Google Scholar 

  • Mesterhazy A, Bartok T, Kaszonyi G, Varga M, Toth B, Varga J (2005) Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur J Plant Pathol 112:267–281

    Article  Google Scholar 

  • Milgate A, Hollaway G, Wallwork H, Thomas G (2014) Septoria tritici blotch fact sheet. GRDC, Canberra

    Google Scholar 

  • Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast central European elite winter wheat population. Theor Appl Genet 128:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498. https://doi.org/10.1038/ng.3439

    Article  CAS  PubMed  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Newcomb M, Olivera PD, Rouse MN, Szabo LJ, Johnson J, Gale S, Luster DG, Wanyera R, Macharia G, Bhavani S, Hodson D, Patpour M, Hovmoller MS, Fetch TG Jr, Jin Y (2016) Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106:729–736. https://doi.org/10.1094/PHYTO-11-14-0302-FI

    Article  CAS  PubMed  Google Scholar 

  • Nga NTT, Hau VTB, Tosa Y (2009) Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801–809

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu S (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    Article  CAS  PubMed  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Olivera Firpo P, Newcomb M, Szabo L, Rouse MN, Johnson JL, Gale SW, Luster D, Hodson D, Cox JA, Burgin L (2015) Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013/14. Phytopathology 105:917–928

    Article  Google Scholar 

  • Olivera Firpo P, Newcomb M, Flath K, Sommerfeldt-Impe N, Szabo L, Carter M, Luster D, Jin Y (2017) Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol 66:1258–1266. https://doi.org/10.1111/ppa.12674

    Article  Google Scholar 

  • Peng JH, Fahima T, Roeder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000) High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210

    Article  CAS  PubMed  Google Scholar 

  • Periyannan SK, Bansal UK, Bariana HS, Pumphrey M, Lagudah ES (2011) A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theor Appl Genet 122:1–7

    Article  PubMed  Google Scholar 

  • Periyannan S, Bansal U, Bariana H, Deal K, Luo MC, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 127:947–955

    Article  CAS  PubMed  Google Scholar 

  • Periyannan S, Milne RJ, Figueroa M, Lagudah ES, Dodds PN (2017) An overview of genetic rust resistance: from broad to specific mechanisms. PLoS Pathog 13:e1006380. https://doi.org/10.1371/journal.ppat.1006380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson PD (2001) Stem rust of wheat: from ancient enemy to modern foe. American Phytopathology Society (APS) Press, St. Paul

    Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:203. https://doi.org/10.1094/PDIS.2000.84.2.203B

    Article  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784. https://doi.org/10.1094/PDIS-94-6-0784C

    Article  CAS  PubMed  Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    Article  CAS  Google Scholar 

  • Randhawa M (2015) Molecular mapping of rust resistance in wheat: discovery to deployment. PhD dissertation, University of Sydney

    Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocova B, Dolezel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  PubMed  Google Scholar 

  • Randhawa MS, Bariana HS, Mago R, Bansal UK (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:65

    Article  CAS  Google Scholar 

  • Randhawa MS, Singh RP, Lan C, Basnet BR, Bhavani S, Huerta-Espino J, Forrest KL, Hayden M (2018) Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula. Aust J Crop Sci 12:1023–1033

    Article  CAS  Google Scholar 

  • Rees RG, Platz GJ (1979) The occurrence and control of yellow spot of wheat in north-eastern Australia. Aust J Exp Agric 19:362–372

    Article  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico DF

    Google Scholar 

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

    Article  CAS  Google Scholar 

  • Rutkoski J, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H, Rouse MN, Jannik J-L, Sorrells M (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7(3):1–10

    Article  Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannik J-L, Sorrells M (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome 8. https://doi.org/10.3835/plantgenome2014.10.0074

  • Saari EE, Prescott JM (1985) World distribution in relation to economic losses. In: Roelfs AP, Bushnell WR (eds) The cereal rusts. Diseases, distribution, epidemiology and control, vol 2. Academic, Orlando, pp 259–298

    Chapter  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910. https://doi.org/10.1111/pbi.12837

    Article  CAS  PubMed  Google Scholar 

  • Schachermayr GM, Siedler H, Gale MD, Winzeler H, Winzeler M, Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115

    Article  CAS  PubMed  Google Scholar 

  • Schachermayr GM, Messmer MM, Feuillet C, Winzeler H, Winzeler M, Keller B (1995) Identification of molecular markers linked to the Agropyrone longatum–derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet 90:982–990

    Article  CAS  PubMed  Google Scholar 

  • Schachermayr GM, Feuillet C, Keller B (1997) Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed 3:65–74

    Article  CAS  Google Scholar 

  • Schumann GL, D’Arcy CJ (2009) Essential plant pathology. American Phytopathology Society, St. Paul

    Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  PubMed  Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Sharma RC, Duveiller E (2004) Effect of Helminthosporium leaf blight on performance of timely and late-seeded wheat under optimal and stressed levels of soil fertility and moisture. Field Crops Res 89:205–218

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow rusting resistance to leaf rust in wheat. Phytopathology 88:890–894

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Nelson JC, Sorrels ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Singh DP, Sharma AK, Tewari AN, Singh KP, Singh AK, Singh RN, Singh SP, Kalappanawar IK, Dodan DS, Singh VK (2004) Assessment of losses due to leaf blight in popular varieties of wheat (Triticum aestivum) under different sowing conditions and agroclimatic zones in India. Indian J Agric Sci 74:110–113

    Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta EJ, Kinyua M, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev 1:54

    Article  CAS  Google Scholar 

  • Singh PK, Feng J, Mergoum M, McCartney CA, Hughes GR (2009) Genetic analysis of seedling resistance to Stagonospora nodorum blotch in selected tetraploid and hexaploid wheat genotypes. Plant Breed 128:118–123

    Article  Google Scholar 

  • Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM (2010) Genetics of wheat–Pyrenophora tritici-repentis interactions. Euphytica 171:1–13

    Article  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481. https://doi.org/10.1146/annurev-phyto-072910-095423

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Zhang Y, He X, Singh RP, Chand R et al (2015a) Development and characterization of the 4th CSISA-spot blotch nursery of bread wheat. Eur J Plant Pathol 143:595–605

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015b) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Sohail Y, Bansal U, Bariana H, Chhuneja P, Mumtaz A, Rattu A, Trethowan R (2014) Identification of a co-dominant eSTS marker linked with leaf rust resistancegene Lr28 in wheat (Triticum aestivum L.). Australian J Crop Sci 8(8):1210–1215

    Google Scholar 

  • Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    Article  CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Simkova H, Fossati D, Moullet O, Brabant C, Vrana J, Dolezel J, Krattinger SG (2017) Rapid cloning of genes in hexaploidy wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796. https://doi.org/10.1038/nbt.3877

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP, Netto DCS, Franco I, Merola Bottan JHM (2009) Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, New York, pp 267–277. https://doi.org/10.1007/978-1-4020-9500-9_27

    Chapter  Google Scholar 

  • Visser B, Herselman L, Park RF, Karaoglu H, Bender CM, Pretorius ZA (2011) Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa. Euphytica 179:119–127. https://doi.org/10.1007/s10681-010-0269-x

    Article  Google Scholar 

  • Wang L, Ma J, Zhou R, Wang X, Jia J (2002) Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI178383 (Triticum aestivum L). Euphytica 124:71–73

    Article  CAS  Google Scholar 

  • Wang ZL, Li LH, He ZH, Duan XY, Zhou YL, Chen XM, Lillemo M, Singh RP, Wang H, Xia XC (2005) Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis 89:457–463

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Weise MV (1987) Compendium of wheat diseases, 2nd edn. American Phytopathology Society, St. Paul

    Google Scholar 

  • WHEAT (2013) Wheat: the vital grain of civilization and food security. CGIAR Research Program wheat 2013 annual report. CGIAR, Mexico DF

    Google Scholar 

  • Zhang X, Han D, Zeng Q, Duan Y, Yuan F, Shi J, Wang Q, Wu J, Huang L, Kang Z (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS ONE 8:e57885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014a) Identification of Yr59 conferring high temperature adult plant resistance to stripe rust in wheat germplasm PI178759. Theor Appl Genet 127:935–945

    Article  CAS  PubMed  Google Scholar 

  • Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ, Rong L, Wang QL, Huang LL, Kang ZS (2014b) Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong34. Theor Appl Genet 127:2349–2358

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep S. Randhawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randhawa, M.S., Bhavani, S., Singh, P.K., Huerta-Espino, J., Singh, R.P. (2019). Disease Resistance in Wheat: Present Status and Future Prospects. In: Wani, S.H. (eds) Disease Resistance in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-20728-1_4

Download citation

Publish with us

Policies and ethics