Skip to main content

Josephson Junctions for Digital Applications

Single Flux Quantum Logic

  • Chapter
  • First Online:
Fundamentals and Frontiers of the Josephson Effect

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 286))

Abstract

The use of Josephson junctions (JJs) as switching elements in digital circuits have attracted a significant attention due to their high switching speed, low power dissipation, and the ability to be interconnected via lossless, low-dispersion superconducting lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Mukhanov, D. Gupta, A. Kadin, V. Semenov, Superconductor analog-to-digital converters. Proc. IEEE 92, 1564–1584 (2004)

    Article  Google Scholar 

  2. O.A. Mukhanov, Superconductor analog-to-digital converters, in 100 Years of Superconductivity, ed. by H. Rogalla, P. Kes (Taylor & Francis, London, UK, 2011), pp. 440–458

    Google Scholar 

  3. I.V. Vernik, D.E. Kirichenko, T.V. Filippov, A. Talalaevskii, A. Sahu, A. Inamdar, A.F. Kirichenko, D. Gupta, O.A. Mukhanov, Superconducting high-resolution low-pass analog-to-digital converters. IEEE Trans. Appl. Supercond. 17, 442–445 (2007)

    Article  ADS  Google Scholar 

  4. D. Gupta, A. Inamdar, D.E. Kirichenko, A.M. Kadin, O.A. Mukhanov, Superconductor analog-to-digital converters and their applications, in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S, pp. 1–4. 5–10 June 2011

    Google Scholar 

  5. O.A. Mukhanov, D. Kirichenko, I. Vernik, et al., Superconductor digital-RF receiver systems. IEICE Trans. Electron. E91-C, 306–317 (2008)

    Article  ADS  Google Scholar 

  6. D. Holmes, A. Ripple, M. Manheimer, Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23, 1701610 (2013)

    Article  ADS  Google Scholar 

  7. S. Nishijima, S. Eckroad, A. Marian, K. Choi et al., Superconductivity and the environment: a roadmap. Supercond. Sci. Technol. 26, 13001 (2013)

    Article  Google Scholar 

  8. K. Makise, H. Terai, S. Miki, T. Yamashita, Z. Wang, Design and fabrication of all-NbN SFQ circuits for SSPD signal processing. IEEE Trans. Appl. Supercond. 23, 1100804 (2013)

    Article  Google Scholar 

  9. H. Myoren et al., Readout circuit based on single-flux-quantum logic circuit for photon-number-resolving SNSPD array. IEEE Trans. Appl. Supercond. 28, 2500304 (2018)

    Article  Google Scholar 

  10. R. McDermott, M.G. Vavilov, Accurate qubit control with single flux quantum pulses. Phys. Rev. Appl. 2, 014007 (2014)

    Article  ADS  Google Scholar 

  11. R. McDermott, M.G. Vavilov, B.L.T Plourde, F.K. Wilhelm, P.J. Liebermann, O.A. Mukhanov, T.A. Ohki, Quantum-classical interface based on single flux quantum digital logic. Quantum Sci. Technol. 3, 024004 (2018). http://iopscience.iop.org/volume/0953-2048/31

    Article  ADS  Google Scholar 

  12. E. Leonard Jr., M. Beck, J. Nelson et al., Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019)

    Article  ADS  Google Scholar 

  13. J.P. Hurrell, A.H. Silver, SQUID digital electronics, in Future Trends in Superconductive Electronics, ed. by B.S. Deaver Jr., et al. (AIP, New York, 1978), pp. 437–447

    Google Scholar 

  14. J.P. Hurrell, D.C. Pridmore-Brown, A.H. Silver, A/D conversion with unlatched SQUIDs. IEEE Trans. Electron. Dev. 27, 1887–1896 (1980)

    Article  ADS  Google Scholar 

  15. K. Nakajima, G. Oya, Y. Sawada, Fluxoid motion in phase mode Josephson switching system. IEEE Trans. Magn. 19, 1201–1204 (1983)

    Article  ADS  Google Scholar 

  16. K.K. Likharev, O.A. Mukhanov, V.K. Semenov, Resistive single flux quantum logic for the Josephson junction technology, in SQUID’85 Superconducting Quantum Interference Devices and their Applications, pp. 1103–1108 (1985)

    Google Scholar 

  17. V.K. Koshelets, K.K. Likharev, V.V. Migulin et al., Experimental realization of a resistive single flux quantum logic circuit. IEEE Trans. Magn. 23, 755–758 (1987)

    Article  ADS  Google Scholar 

  18. O.A. Mukhanov, K.K. Likharev, V.K. Semenov, Ultimate performance of RSFQ logic circuits. IEEE Trans. Magn. 23, 759–762 (1987)

    Article  ADS  Google Scholar 

  19. V.K. Kaplunenko, M.I. Khabipov, V.P. Koshelets et al., Experimental study of the RSFQ logic elements. IEEE Trans. Magn. 25, 861–864 (1989)

    Article  ADS  Google Scholar 

  20. K.K. Likharev, V.K. Semenov, RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  ADS  Google Scholar 

  21. P. Bunyk, K. Likharev, D. Zinoviev, RSFQ technology: physics and devices. Int. J. High Speed Electron. Syst. 11, 257–305 (2001)

    Article  Google Scholar 

  22. I. Vernik, D. Kirichenko, V. Dotsenko et al., Cryocooled wideband digital channelizing RF receiver based on low-pass ADC. Supercond. Sci. Technol. 20, S323–S327 (2007)

    Article  Google Scholar 

  23. N. Takagi, K. Murakami, A. Fujimaki, et al., Proposal of a desk side supercomputer with reconfigurable data paths using rapid single flux quantum circuits. IEICE Trans. Electron. E91-C, 350–355 (2008)

    Article  ADS  Google Scholar 

  24. A. Fujimaki, High speed digital circuits, in 100 Years of Superconductivity, ed. by H. Rogalla, P. Kes (Taylor and Francis, London, 2011), pp. 431–440

    Google Scholar 

  25. J.X. Przybysz, D.L. Miller, H. Toepfer, O. Mukhanov, et al., Superconductor digital electronics, in Applied Superconductivity: Handbook on Devices and Applications, ed by P. Seidel (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015). https://doi.org/10.1002/9783527670635.ch10

    Google Scholar 

  26. M. Tanaka, H. Akaike, A. Fujimaki et al., 100-GHz single-flux-quantum bit-serial adder based on 10-kA/cm2 niobium process. IEEE Trans. Appl. Supercond. 21, 792–796 (2011)

    Article  ADS  Google Scholar 

  27. G. Tang, G. Takata, M. Tanaka, A. Fujimaki et al., 4-bit bit-slice arithmetic logic unit for 32-bit RSFQ microprocessors. IEEE Trans. Appl. Supercond. 26, 1–6 (2016)

    Google Scholar 

  28. R. Sato, Y. Hatanaka, Y. Ando et al., High-speed operation of random-access-memory-embedded microprocessor with minimal instruction set architecture based on rapid single-flux-quantum logic. IEEE Trans. Appl. Supercond. 27, 1–5 (2017)

    Google Scholar 

  29. T. Filippov, A. Sahu, A. Kirichenko et al., 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Phys. Procedia. 36, 59–65 (2012)

    Article  ADS  Google Scholar 

  30. T. Filippov, M. Dorojevets, A. Sahu et al., 8-bit asynchronous wave-pipelined RSFQ arithmetic-logic unit. IEEE Trans. Appl. Supercond. 21, 847–851 (2011)

    Article  ADS  Google Scholar 

  31. I. Kataeva, H. Akaike, A. Fujimaki et al., An operand routing network for an SFQ reconfigurable data-paths processor. IEEE Trans. Appl. Supercond. 19, 665–669 (2009)

    Article  ADS  Google Scholar 

  32. T. Theis, H.-S.P. Wong, The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017)

    Article  Google Scholar 

  33. O.A. Mukhanov, Energy-efficient single flux quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)

    Article  ADS  Google Scholar 

  34. A.V. Rylyakov, K.K. Likharev, Pulse jitter and timing errors in RSFQ circuits. IEEE Trans. Appl. Supercond. 9, 3539–3544 (1999)

    Article  ADS  Google Scholar 

  35. M. Tanaka, M. Ito, A. Kitayama, et al., 18-GHz, 4.0-aJ/bit operation of ultra-low-energy rapid single-flux quantum shift registers. Jpn. J. Appl. Phys. 51, 053102 (2012)

    Article  ADS  Google Scholar 

  36. M. Tanaka, A. Kitayama, T. Koketsu et al., Low energy consumption RSFQ circuits driven by low voltages. IEEE Trans. Appl. Supercond. 23, 1701 (2013)

    Google Scholar 

  37. D.E. Kirichenko, S. Sarwana, A.F. Kirichenko, Zero static power dissipation biasing of RSFQ circuits. IEEE Trans. Appl. Supercond. 21, 776–779 (2011)

    Article  ADS  Google Scholar 

  38. M. Volkmann, A. Sahu, C.J. Fourie, O.A. Mukhanov, Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation. Supercond. Sci. Technol. 26, 015002 (2013)

    Article  ADS  Google Scholar 

  39. I. Vernik, S. Kaplan, M. Volkmann et al., Design and test of asynchronous eSFQ circuits. Supercond. Sci. Technol. 27, 044030 (2014)

    Article  ADS  Google Scholar 

  40. Q.P. Herr, A.Y. Herr, O.T. Oberg, A.G. Ioannidis, Ultra-low-power superconductor logic. J. Appl. Phys. 109, 103903 (2011)

    Article  ADS  Google Scholar 

  41. N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26, 035010 (2013)

    Article  ADS  Google Scholar 

  42. I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy et al., Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017)

    Article  Google Scholar 

  43. M.H. Volkmann, I. Vernik, O.A. Mukhanov, Wave-pipelined eSFQ circuits. IEEE Trans. Appl. Supercond. 25, 1301005 (2015)

    Article  Google Scholar 

  44. K.K. Likharev, Int. J. Theor. Phys. 21, 311–326 (1982)

    Article  Google Scholar 

  45. K.K. Likharev, S.V. Rylov, V.K. Semenov, IEEE Trans. Magn. 21, 947–950 (1985)

    Article  ADS  Google Scholar 

  46. J. Ren, V.K. Semenov, Y.A. Polyakov, D.V. Averin, J.-S. Tsai, IEEE Trans. Appl. Supercond. 19, 961–967 (2009)

    Article  ADS  Google Scholar 

  47. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci Rep. 4, 6354 (2014)

    Article  ADS  Google Scholar 

  48. S. Kaplan, Serial biasing of 16 modular circuits at 50 Gb/s. IEEE Trans. Appl. Supercond. 22, 1300103 (2012)

    Article  ADS  Google Scholar 

  49. W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K. Likharev, Superconductor digital frequency divider operating up to 750 GHz. Appl. Phys. Lett. 73, 2817–2819 (1998)

    Article  ADS  Google Scholar 

  50. O.T. Oberg, Superconducting Logic Circuits Operating with Reciprocal Magnetic Flux Quanta (University of Maryland, Maryland, MD, USA, 2011)

    Google Scholar 

  51. N. Yoshikawa, Y. Kato, Reduction of power consumption of RSFQ circuits by inductance-load biasing. Supercond. Sci. Technol. 12(11), 918–920 (1999)

    Article  ADS  Google Scholar 

  52. M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, A. Fujimaki, Low-energy consumption RSFQ circuits driven by low voltages. IEEE Trans. Appl. Supercond. 23(3), 1701104 (2013)

    Article  ADS  Google Scholar 

  53. M.H. Volkmann, A. Sahu, C.J. Fourie, O.A. Mukhanov, Experimental investigation of energy-efficient digital circuits based on eSFQ logic. IEEE Trans. Appl. Supercond. 23(3), 1301505 (2013)

    Article  ADS  Google Scholar 

  54. Q.P. Herr, A.Y. Herr, O.T. Oberg, A.G. Ioannidis, Ultra-low-power superconductor logic. J. Appl. Phys. 109(10), 103903 (2011)

    Article  ADS  Google Scholar 

  55. M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada, H. Nakane, R. Suda, E. Goto, Quantum flux parametron: a single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991)

    Article  ADS  Google Scholar 

  56. N. Takeuchi, D. Ozawa, Y. Yamanashi, N. Yoshikawa, An adiabatic quantum flux parametron as an ultra-low-power logic device. Supercond. Sci. Tech. 26, 35010 (2013)

    Article  Google Scholar 

  57. H.L. Ko, G.S. Lee, Noise analysis of the quantum flux parametron. IEEE Trans. Appl. Supercond. 2, 156–164 (1992)

    Article  ADS  Google Scholar 

  58. D.E. McCumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113 (1968)

    Article  ADS  Google Scholar 

  59. N. Takeuchi, K. Ehara, K. Inoue, Y. Yamanashi, N. Yoshikawa, Margin and energy dissipation of adiabatic quantum-flux-parametron logic at finite temperature. IEEE Trans. Appl. Supercond. 23(3), 1700304 (2013)

    Article  Google Scholar 

  60. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Thermodynamic study of energy dissipation in adiabatic superconductor logic. Phys. Rev. Appl. 4(3), 034007 (2015)

    Article  ADS  Google Scholar 

  61. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Measurement of 10 zJ energy dissipation of adiabatic quantum-flux- parametron logic using a superconducting resonator. Appl. Phys. Lett. 102(5), 052602 (2013)

    Article  ADS  Google Scholar 

  62. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Simulation of sub-kBT bit-energy operation of adiabatic quantum-flux-parametron logic with low bit-error-rate. Appl. Phys. Lett. 103(6), 062602 (2013)

    Article  ADS  Google Scholar 

  63. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Energy efficiency of adiabatic superconductor logic. Supercond. Sci. Technol. 28(1), 015003 (2015)

    Article  ADS  Google Scholar 

  64. J. Martinis, K. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. Osborn, K. Cicak, S. Oh, D. Pappas, R. Simmonds, C. Yu, Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005)

    Google Scholar 

  65. A. Dunsworth, A. Megarnt, C. Quintana, Z. Chen, R. Barends, B. Burkett, B. Foxen, Yu Chen, B. Chiaro, A. Fowler, R. Graff, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, M. Neely, C. Neil, P. Roushan, D. Sank, A. Veinsencher, J. Wenner, T. White, and J. Martinis, Characterization and reduction of capacitive loss induced by sub-micron josephson junction fabrication in superconducting qubits. Appl. Phys. Lett. 111, 022601 (2017)

    Article  ADS  Google Scholar 

  66. K. Inoue, N. Takeuchi, K. Ehara, Y. Yamanashi, N. Yoshikawa, Simulation and experimental demonstration of logic circuits using an ultra-low-power adiabatic quantum-flux-parametron. IEEE Trans. Appl. Supercond. 23(3), 1301105 (2013)

    Article  ADS  Google Scholar 

  67. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library adopting minimalist design. J. Appl. Phys. 117(17), 173912 (2015)

    Article  ADS  Google Scholar 

  68. K. Inoue, N. Takeuchi, T. Narama, Y. Yamanashi, N. Yoshikawa, Design and demonstration of adiabatic quantum-flux-parametron logic circuits with superconductor magnetic shields. Supercond. Sci. Technol. 28(4), 045020 (2015)

    Article  ADS  Google Scholar 

  69. Y. Yamanashi, T. Matsushima, N. Takeuchi, N. Yoshikawa, T. Ortlepp, Evaluation of current sensitivity of quantum flux parametron. Supercond. Sci. Technol. 30(8), 084004 (2017)

    Article  ADS  Google Scholar 

  70. N. Tsuji, N. Takeuchi, Y. Yamanashi, T. Ortlepp, N. Yoshikawa, Majority gate-based feedback latches for adiabatic quantum flux parametron logic. IEICE Trans. Electron. E99.C(6), 710–716 (2016)

    Article  ADS  Google Scholar 

  71. N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Novel latch for adiabatic quantum-flux-parametron logic. J. Appl. Phys. 115, 103910 (2014)

    Article  ADS  Google Scholar 

  72. F. China, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Design and demonstration of interface circuits between rapid single-flux-quantum and adiabatic quantum-flux-parametron circuits. IEEE Trans. Appl. Supercond. 26(5), 1301305 (2016)

    Article  Google Scholar 

  73. F. China, N. Tsuji, T. Narama, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Demonstration of signal transmission between adiabatic quantum-flux-parametrons and rapid single-flux-quantum circuits using superconductive microstrip lines. IEEE Trans. Appl. Supercond. 27(4), 1300205 (2017)

    Google Scholar 

  74. C.L. Ayala, N. Takeuchi, Y. Yamanashi, T. Ortlepp, N. Yoshikawa, Majority-logic-optimized parallel prefix carry look-ahead adder families using adiabatic quantum-flux-parametron logic. IEEE Trans. Appl. Supercond. 27(4), 1300407 (2017)

    Article  Google Scholar 

  75. N. Tsuji, C.L. Ayala, N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, Design and implementation of a 16-word by 1-bit register file using adiabatic quantum flux parametron logic. IEEE Trans. Appl. Supercond. 27(4), 1300904 (2017)

    Article  Google Scholar 

  76. N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm2 niobium fabrication process. Supercond. Sci. Technol. 30(3), 035002 (2017)

    Article  ADS  Google Scholar 

  77. N. Takeuchi, T. Ortlepp, Y. Yamanashi, N. Yoshikawa, High-speed experimental demonstration of adiabatic quantum-flux-parametron gates using quantum-flux-latches. IEEE Trans. Appl. Supercond. 24, 1300204 (2014)

    Article  Google Scholar 

  78. N. Takeuchi, H. Suzuki, N. Yoshikawa, Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver. Appl. Phys. Lett. 110(20), 202601 (2017)

    Article  ADS  Google Scholar 

  79. Q. Xu, C.L. Ayala, N. Takeuchi, Y. Yamanashi, N. Yoshikawa, HDL-based modeling approach for digital simulation of adiabatic quantum flux parametron logic. IEEE Trans. Appl. Supercond. 26(8), 1301805 (2016)

    Article  Google Scholar 

  80. Q. Xu, C.L. Ayala, N. Takeuchi, Y. Murai, Y. Yamanashi, N. Yoshikawa, Synthesis flow for cell-based adiabatic quantum-flux-parametron structural circuit generation with HDL back-end verification. IEEE Trans. Appl. Supercond. 27(4), 1301905 (2017)

    Google Scholar 

  81. Y. Murai, C.L. Ayala, N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Development and demonstration of routing and placement EDA tools for large-scale adiabatic quantum-flux-parametron circuits. IEEE Trans. Appl. Supercond. 27(6), 1302209 (2017)

    Article  Google Scholar 

  82. K. Fang, N. Takeuchi, T. Ando, Y. Yamanashi, N. Yoshikawa, Multi-excitation adiabatic quantum-flux-parametron. J. Appl. Phys. 121(14), 143901 (2017)

    Article  ADS  Google Scholar 

  83. T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux parametron fabricated using a double-active layered niobium process. Supercond. Sci. Technol. 30(7), 075003 (2017)

    Article  ADS  Google Scholar 

  84. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversibility and energy dissipation in adiabatic superconductor logic. Sci. Rep. 7(1), 75 (2017)

    Article  ADS  Google Scholar 

  85. Y. Wada, Josephson memory technology. Proc. IEEE 77, 1194–1207 (1989)

    Article  Google Scholar 

  86. I.I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Yu Kupriyanov, A.L. Gudkov, A.S. Sidorenko, Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2709 (2017)

    Article  Google Scholar 

  87. W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968)

    Article  ADS  Google Scholar 

  88. H.H. Zappe, A single flux quantum Josephson junction memory cell. Appl. Phys. Lett. 25, 424–426 (1974)

    Article  ADS  Google Scholar 

  89. T.D. Clark, J.P. Baldwin, Superconducting memory device using Josephson junctions. Electron. Lett. 3, 178–179 (1967)

    Article  Google Scholar 

  90. W. Anacker, H.H. Zappe, Superconducting memory array using weak links. U.S. Patent No. 3705393

    Google Scholar 

  91. K.K. Likharev, The properties of a weakly coupled superconducting ring as an element with several stable states. Radiotekhnika i Elektronika 19, 1494–1502 (1974)

    ADS  Google Scholar 

  92. W.Y. Lum, H.W. Chan, T. Van Duzer, Memory and logic circuits using semiconductor-barrier Josephson junctions. IEEE Trans. Magn. 13, 48–51 (1977)

    Article  ADS  Google Scholar 

  93. W.Y. Lum, T. Van Duzer, Switching measurements on semiconductor-barrier Josephson junctions, isolated and in memory loops. J. Appl. Phys. 48, 1693–1696 (1977)

    Article  ADS  Google Scholar 

  94. W. Anacker, Potential of superconductive Josephson tunneling technology for ultrahigh performance memories and processors. IEEE Trans. Magn. 5, 968 (1969)

    Article  ADS  Google Scholar 

  95. H.H. Zappe, Invited: Josephson devices as potential circuit elements in ultra-fast computers. Jpn. J. Appl. Phys. 16, 247 (1977)

    Article  Google Scholar 

  96. W.H. Henkels, H.H. Zappe, An experimental 64-bit decoded Josephson NDRO random access memory. IEEE J. Solid-State Circ. 13, 591 (1978)

    Article  ADS  Google Scholar 

  97. W.H. Henkels, J.H. Greiner, Experimental single flux quantum NDRO Josephson memory cell. IEEE J. Solid-State Circ. 14, 794 (1979)

    Article  ADS  Google Scholar 

  98. I. Kurosawa, A. Vagi, H. Nakagawa, H. Hayakawa, Single flux-quantum Josephson memory cell using a new threshold characteristic. Appl. Phys. Lett. 43, 1067 (1983)

    Article  ADS  Google Scholar 

  99. S. Nagasawa, K. Hinode, T. Satoh, Y. Kitagawa, M. Hidaka, Design of all-dc-powered high-speed single flux quantum random access memory based on a pipeline structure for memory cell arrays. Supercond. Sci. Technol. 19, S325–S330 (2006)

    Article  ADS  Google Scholar 

  100. S. Nagasawa, S. Tahara, H. Numata, S. Tsuchida, A miniaturized vortex transitional memory cell for a Josephson high-speed RAM, in Proceedings of IEEE International Electron Devices Meeting, IEDM’92, pp. 793–796 (1992)

    Google Scholar 

  101. S. Nagasawa, S. Tahara, H. Numata, S. Tsuchida, Miniaturized vortex transitional Josephson memory cell by a vertically integrated device structure. IEEE Trans. Appl. Supercond. 4, 19 (1994)

    Article  ADS  Google Scholar 

  102. S. Nagasawa, Y. Hashimoto, H. Numata, S. Tahara, A 380 ps, 9.5 mW Josephson 4-Kbit RAM operating at a high bit yield. IEEE Trans. Appl. Supercond. 5, 2447–2452 (1995)

    Article  ADS  Google Scholar 

  103. S. Tahara, I. Ishida, Y. Ajisawa, Y. Wada, Experimental vortex transitional nondestructive read-out Josephson memory cell. J. Appl. Phys. 65, 851–856 (1989)

    Article  ADS  Google Scholar 

  104. I.M. Dayton, T. Sage, E.C. Gingrich, M.G. Loving, T.F. Ambrose, N.P. Siwak, S. Keebaugh, C. Kirby, D.L. Miller, A.Y. Herr, Q.P. Herr, O. Naaman, Experimental demonstration of a Josephson magnetic memory cell with a programmable π-junction. IEEE Magn. Lett. 9, 3301905 (2018)

    Article  Google Scholar 

  105. H. Nakagawa, I. Kurosawa, M. Aoyagi, S. Kosaka, Y. Hamazaki, Y. Okada, S. Takada, A 4-bit Josephson computer ETL-JC1. IEEE Trans. Appl. Supercond. 1, 37–47 (1991)

    Article  ADS  Google Scholar 

  106. T. Sterling, G. Gao, K.K. Likharev, P.M. Kogge, M.J. MacDonald, Steps to petaflops computing: a hybrid technology multithreaded architecture, in Proceedings of the IEEE Aerospace Conference, IEEE, pp. 41–74 (1997)

    Google Scholar 

  107. P.-F. Yuh, P. Bradley, One-junction superconducting memory cell with column sense. IEEE Trans. Appl. Supercond. 5, 3459–3463 (1995)

    Article  ADS  Google Scholar 

  108. S.V. Polonsky, A.F. Kirichenko, V.K. Semenov, K.K. Likharev, Rapid single flux quantum random access memory. IEEE Trans. Appl. Supercond. 5, 3000–3005 (1995)

    Article  ADS  Google Scholar 

  109. S. Nagasawa, Y. Hashimoto, H. Numata, S. Tahara, High frequency clock operation of Josephson 256-word x 16-bit RAMS. IEEE Trans. Appl. Supercond. 9, 3708–3713 (1999)

    Article  ADS  Google Scholar 

  110. K.K. Likharev, Superconductor devices for ultrafast computing, in Applications of Superconductivity, ed. by H. Weinstock (Kluwer Academic Publishers, Dordrecht, Netherlands, 2000)

    Chapter  Google Scholar 

  111. A. Kirichenko, O. Mukhanov, D. Brock, An SFQ cryogenic RAM, in Extended Abstracts of ISEC‘99 (Berkeley, USA) p. 125

    Google Scholar 

  112. A.F. Kirichenko, S. Sarwana, D.K. Brock, M. Radpavar, Pipelined DC-powered SFQ RAM. IEEE Trans. Appl. Supercond. 11, 537–540 (2001)

    Article  ADS  Google Scholar 

  113. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  114. V.K. Semenov, YuA Polyakov, S.K. Tolpygo, Very large scale integration of Josephson-junction-based superconductor random access memories. IEEE Trans. Appl. Supercond. 29, 1302809 (2019)

    Google Scholar 

  115. M.A. Manheimer, Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25, 1301704 (2015)

    Article  Google Scholar 

  116. A.Y. Herr, Q.P. Herr, Josephson magnetic random access memory system and method. U.S. Patent, 8, 270, 209 (2012)

    Google Scholar 

  117. E.C. Gingrich, B.M. Niedzielski, J.A. Glick, Y. Wang, D.L. Miller, R. Loloee, W.P. Pratt Jr., N.O. Birge, Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016)

    Article  Google Scholar 

  118. C. Guarcello, P. Solinas, A. Braggio, M. Di Ventra, F. Giazotto, Josephson thermal memory. Phys. Rev. Appl. 9, 014021 (2018)

    Article  ADS  Google Scholar 

  119. A.F. Hebard, A.T. Fiory, A memory device utilizing the storage of Abrikosov vortices at an array of pinning sites in a superconducting film. AlP Conf. Proc. 44, 465–469 (1978)

    Article  ADS  Google Scholar 

  120. W. Bächtold, The vortex file: a proposal for a new application of type-II superconductivity. IEEE Trans. Magn. 15, 558–561 (1979)

    Article  ADS  Google Scholar 

  121. S. Uehara, K. Nagata, Trapped vortex memory cells. Appl. Phys. Lett. 39, 992–993 (1981)

    Article  ADS  Google Scholar 

  122. K. Miyahara, M. Mukaida, K. Hohkawa, Abrikosov vortex memory. Appl. Phys. Lett. 47, 754–756 (1985)

    Article  ADS  Google Scholar 

  123. S.K.H. Lam, S. Gnanarajan, Hysteretic behaviour of nanoSQUIDs—prospective application as trapped-vortex memory. Supercond. Sci. Technol. 22, 064005 (2009)

    Article  ADS  Google Scholar 

  124. T. Golod, A. Iovan, V.M. Krasnov, Single Abrikosov vortices as quantized information bits. Nat. Commun. 6, Art. No. 8628 (2015)

    Google Scholar 

  125. A.A. Golubov, M.Yu. Kupriyanov, Effect of solitary Abrikosov vortices on the properties of Josephson tunnel junctions. Sov. Phys. JETP 65, 849–855 (1987)

    Google Scholar 

  126. A.A. Golubov, M.Yu. Kupriyanov, Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes. J. Low. Temp. Phys. 70, 83–130 (1988)

    Google Scholar 

  127. V.N. Gubankov, M.P. Lisitskii, I.L. Serpuchenko, F.N. Sklokin, M.V. Fislul, Influence of trapped Abrikosov vortices on the critical current of the Josephson junction. Supercond. Sci. Technol. 5, 168–173 (1992)

    Article  ADS  Google Scholar 

  128. M.V. Fistul, G.F. Giuliani, Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices. Phys. Rev. B 56, 788–794 (1997)

    Article  ADS  Google Scholar 

  129. A. Rydh, T. Golod, V.M. Krasnov, Field- and current controlled switching between vortex states in a mesoscopic superconductor. J. Phys: Conf. Ser. 153, 012027 (2009)

    Google Scholar 

  130. V.M. Krasnov, O. Ericsson, S. Intiso, P. Delsing, V.A. Oboznov, A.S. Prokofiev, V.V. Ryazanov, Planar S–F–S Josephson junctions made by focused ion beam etching. Physica C 418, 16–22 (2005)

    Article  ADS  Google Scholar 

  131. P.A. Rosenthal, M.R. Beasley, K. Char, M.S. Colclough, G. Zaharchuk, Flux focusing effects in planar thin-film grain-boundary Josephson junctions. Appl. Phys. Lett. 59, 3482 (1991)

    Article  ADS  Google Scholar 

  132. R.G. Humphreys, J.A. Edwards, YBa2Cu3O7 thin film grain boundary junctions in a perpendicular magnetic field. Physica C 210, 42–54 (1993)

    Article  ADS  Google Scholar 

  133. R.A. Gange, Taking cryogenic memories out of cold storage. Electronics 40, 111 (1967)

    Google Scholar 

  134. J. Matisoo, Superconductive computer devices, in The Science and Technology of Superconductivity, Proceedings of a Summer Course Held Aug 13–26, 1971, at Georgetown University, Washington, D.C., ed. by W.D. Gregory, W.N. Mathews Jr., E.A. Edelsack, E.A., (Springer, Plenum Press, New York-London, 1973), pp. 607–623

    Google Scholar 

  135. D.A. Buck, The cryotron—a superconductive computer component. Proc. IRE 44, 482–493 (1956)

    Article  Google Scholar 

  136. B.D. Josephson, Possible new effects in superconducting tunnelling. Phys. Lett. 1, 251–253 (1962)

    Article  ADS  MATH  Google Scholar 

  137. N.D. Richards, The design of large cryotron memories. IEEE Trans. Magn. 2, 394–398 (1966)

    Article  ADS  Google Scholar 

  138. Q.-Y. Zhao, E.A. Toomey, B.A. Butters, A.N. McCaughan, A.E. Dane, S.-W. Nam, K.K. Berggren, A compact superconducting nanowire memory element operated by nanowire cryotrons. Supercond. Sci. Technol. 31, 035009 (2018)

    Article  ADS  Google Scholar 

  139. G.R. Berdiyorov, M.V. Milošević, F.M. Peeters, Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements. Phys. Rev. B 81, 144511 (2010)

    Article  ADS  Google Scholar 

  140. A. Murphy, A. Bezryadin, Asymmetric nanowire SQUID: linear current-phase relation, stochastic switching, and symmetries. Phys. Rev. B 96, 094507 (2017)

    Article  ADS  Google Scholar 

  141. A. Murphy, D.V. Averin, A. Bezryadin, Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops. New J. Phys. 19, 063015 (2017)

    Article  ADS  Google Scholar 

  142. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, New York, 1986)

    Google Scholar 

  143. M. Faucher, T. Fournier, B. Pannetier, C. Thirion, W. Wernsdorfer, J.C. Villegier, V. Bouchiat, Niobium and niobium nitride SQUIDs based on anodized nanobridges made with an atomic force microscope. Physica C 368, 211–217 (2002)

    Article  ADS  Google Scholar 

  144. K. Hasselbach, D. Mailly, J.R. Kirtley, Micro-superconducting quantum interference device characteristics. J. Appl. Phys. 91, 4432–4437 (2002)

    Article  ADS  Google Scholar 

  145. W.A. Little, R.D. Parks, Observation of quantum periodicity in transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962)

    Article  ADS  Google Scholar 

  146. A.G. Sivakov, A.S. Pokhila, A.M. Glukhov, S.V. Kuplevakhsky, A.N. Omelyanchouk, Oscillations of critical superconducting current in thin doubly-connected Sn films in an external perpendicular magnetic field. Low Temp. Phys. 40, 408–417 (2014)

    Article  ADS  Google Scholar 

  147. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  148. M. Tinkham, C.N. Lau, Quantum limit to phase coherence in thin superconducting wires. Appl. Phys. Lett. 80, 2946–2948 (2002)

    Article  ADS  Google Scholar 

  149. U. Ghoshal, H. Kroger, T. Van Duzer, Superconductor-semiconductor memories. IEEE Trans. Appl. Supercond. 3, 2315–2318 (1993)

    Article  ADS  Google Scholar 

  150. Q. Liu, Josephson-CMOS hybrid memories (Ph.D. Dissertation, University of California at Berkeley, 2007)

    Google Scholar 

  151. T. Van Duzer, Superconductor digital electronics past, present, and future. IEICE Trans. Electron. E91C, 260–271 (2008)

    Article  ADS  Google Scholar 

  152. T. Van Duzer, L. Zheng, S.R. Whiteley, H. Kim, J. Kim, X. Meng, T. Ortlepp, 64-kb hybrid Josephson-CMOS 4 kelvin RAM with 400 ps access time and 12 mW read power. IEEE Trans. Appl. Supercond. 23, 1700504 (2013)

    Article  Google Scholar 

  153. H. Suzuki, A. Inoue, T. Imamura, S. Hasuo, A Josephson driver to interface Josephson junctions to semiconductor transistors, in IEDM Technical Digest, pp. 290–293 (1988)

    Google Scholar 

  154. M. Tanaka, M. Suzuki, G. Konno, Y. Ito, A. Fujimaki, N. Yoshikawa, Josephson-CMOS hybrid memory with nanocryotrons. IEEE Trans. Appl. Supercond. 27, 1800904 (2017)

    Google Scholar 

  155. A.N. McCaughan, K.K. Berggren, A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14, 5748–5753 (2014)

    Article  ADS  Google Scholar 

  156. I.P. Nevirkovets, O. Chernyashevskyy, J. Walter, O.A. Mukhanov, Superconducting-ferromagnetic injection-controlled switching device, IEEE Trans. Appl. Supercond. 29, 1100504 (2019)

    Google Scholar 

  157. W. Nolting, W. Borgiel, V. Dose, Th Fauster, Finite-temperature ferromagnetism of nickel. Phys. Rev. B 40, 5015–5027 (1989)

    Article  ADS  Google Scholar 

  158. E.A. Demler, G.B. Arnold, M.R. Beasley, Superconducting proximity effects in magnetic metals. Phys. Rev. B 55(15), 174 (1997)

    Google Scholar 

  159. L.N. Bulaevskii, V.V. Kuzii, A.A. Sobyanin, Weak-link superconducting system with current in the ground state. JETP Lett. 25, 290–294 (1977)

    ADS  Google Scholar 

  160. A.I. Buzdin, L.N. Bulaevskii, S.V. Panyukov, Oscillations of the critical current in dependence on the exchange field and ferromagnetic metal thickness in a S-F-S Josephson junction. JETP Lett. 35, 178 (1982)

    ADS  Google Scholar 

  161. J.S. Jiang, D. Davidovic, D.H. Reich, C.L. Chien, Oscillatory superconducting transition temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74, 314–317 (1995)

    Article  ADS  Google Scholar 

  162. V.V. Ryazanov, V.A. Oboznov, A.Y. Rusanov, A.V. Veretennikov, A.A. Golubov, J. Aarts, Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001)

    Article  ADS  Google Scholar 

  163. Yu. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  MATH  Google Scholar 

  164. A.V. Ustinov, V.K. Kaplunenko, Rapid single-flux quantum logic using π-shifters. J. Appl. Phys. 94, 5405–5407 (2003)

    Article  ADS  Google Scholar 

  165. A.K. Feofanov, V.A. Oboznov, V.V. Bol’ginov, J. Lisenfeld, S. Poletto, V.V. Ryazanov, A.N. Rossolenko, M. Khabipov, D. Balashov, A.B. Zorin, P.N. Dmitriev, V.P. Koshelets, A.V. Ustinov, Implementation of superconductor/ ferromagnet/superconductor pi-shifters in superconducting digital and quantum circuits. Nat. Phys. 6, 593–597 (2010)

    Article  Google Scholar 

  166. I.P. Nevirkovets, A superconducting transistor like device having good input-output isolation. Appl. Phys. Lett. 95, 052505 (2009)

    Article  ADS  Google Scholar 

  167. I.P. Nevirkovets, M.A. Belogolovskii, Hybrid superconductor–ferromagnet transistor-like device. Supercond. Sci. Technol. 24, 024009 (2011)

    Article  ADS  Google Scholar 

  168. I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Superconducting-ferromagnetic transistor. IEEE Trans. Appl. Supercond. 24, 1800506 (2014)

    Article  Google Scholar 

  169. I.P. Nevirkovets, O. Chernyashevskyy, G.V. Prokopenko, O.A. Mukhanov, J.B. Ketterson, Control of supercurrent in hybrid superconducting-ferromagnetic transistors. IEEE Trans. Appl. Supercond. 25, 1800705 (2015)

    Article  Google Scholar 

  170. V.N. Krivoruchko, E.A. Koshina, Inhomogeneous magnetism induced in a superconductor at a superconductor-ferromagnet interface. Phys. Rev. B 66, 014521 (2002)

    Article  ADS  Google Scholar 

  171. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures. Phys. Rev. B 69, 174504 (2004)

    Article  ADS  Google Scholar 

  172. F.S. Bergeret, A.L. Yeyati, A. Martín-Rodero, Inverse proximity effect in superconductor-ferromagnet structures: from the ballistic to the diffusive limit. Phys. Rev. B 72, 064524 (2005)

    Article  ADS  Google Scholar 

  173. I. Asulin, O. Yuli, G. Koren, O. Millo, Evidence for induced magnetization in superconductor-ferromagnet heterostructures: a scanning tunneling spectroscopy study. Phys. Rev. B 79, 174524 (2009)

    Article  ADS  Google Scholar 

  174. S. Oh, D. Youm, M.R. Beasley, A superconductive magnetoresistive memory element using controlled exchange interaction. Appl. Phys. Lett. 71, 2376–2378 (1997)

    Article  ADS  Google Scholar 

  175. P.V. Leksin, N.N. Garif’yanov, I.A. Garifullin, J. Schumann, V. Kataev, O.G. Schmidt, B. Büchner, Manifestation of new interference effects in a superconductor-ferromagnet spin valve. Phys. Rev. Lett. 106, 067005 (2011)

    Article  ADS  Google Scholar 

  176. H.K. Wong, B.Y. Jin, H.Q. Yang, J.B. Ketterson, J.E. Hilliard, Superconducting properties of V/Fe superlattices. J. Low Temp. Phys. 63, 307–318 (1986)

    Article  ADS  Google Scholar 

  177. Z. Radic, M. Ledvij, L. Dobrosavljevic-Grujic, A.I. Buzdin, J.R. Clem, Transition temperatures of superconductor-ferromagnet superlattices. Phys. Rev. B 44, 759–764 (1991)

    Article  ADS  Google Scholar 

  178. S. Oh, Y.-H. Kim, D. Youm, M.R. Beasley, Spin-orbit scattering effect on the oscillatory Tc of superconductive/magnetic multilayers. Phys. Rev. B 63, 052501 (2001)

    Article  ADS  Google Scholar 

  179. P.V. Leksin, N.N. Garif’yanov, I.A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O.G. Schmidt, B. Büchner, Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure. Appl. Phys. Lett. 97, 102505 (2010)

    Article  ADS  Google Scholar 

  180. T.I. Larkin, V.V. Bol’ginov, V.S. Stolyarov, V.V. Ryazanov, I.V. Vernik, S.K. Tolpygo, O.A. Mukhanov, Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 100, 222601 (2012)

    Article  ADS  Google Scholar 

  181. I.V. Vernik, V.V. Bol’ginov, S.V. Bakurskiy, A.A. Golubov, M.Yu. Kupriyanov, V.V. Ryazanov, O.A. Mukhanov, Magnetic Josephson junctions with superconducting interlayer for cryogenic memory. IEEE Trans. Appl. Supercond. 23, 1701208 (2013)

    Article  ADS  Google Scholar 

  182. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, V.V. Bol’ginov, V.V. Ryazanov, I.V. Vernik, O.A. Mukhanov, M.Yu. Kupriyanov, A.A. Golubov, Theoretical model of superconducting spintronic SIsFS devices. Appl. Phys. Lett. 102, 192603 (2013)

    Article  ADS  Google Scholar 

  183. S.V. Bakurskiy, N.V. Klenov, I.I. Soloviev, M.Yu. Kupriyanov, A.A. Golubov, Theory of supercurrent transport in SIsFS Josephson junctions. Phys. Rev. B 88, 144519 (2013)

    Google Scholar 

  184. I.A. Golovchanskiy, V.V. Bol’ginov, V.S. Stolyarov, N.N. Abramov, A.B. Hamida, O.V. Emelyanova, B.S. Stolyarov, M.Yu. Kupriyanov, A.A. Golubov, V.V. Ryazanov, Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions. Phys. Rev. B 94, 214514 (2016)

    Google Scholar 

  185. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096 (2001)

    Article  ADS  Google Scholar 

  186. A.F. Volkov, F.S. Bergeret, K.B. Efetov, Odd triplet superconductivity in superconductor-ferromagnet multilayered structures. Phys. Rev. Lett. 90, 117006 (2003)

    Article  ADS  Google Scholar 

  187. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Manifestation of triplet superconductivity in superconductor-ferromagnet structures. Phys. Rev. B 68, 064513 (2003)

    Article  ADS  Google Scholar 

  188. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005)

    Article  ADS  Google Scholar 

  189. M. Eschrig, Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys. 78, 104501 (2015)

    Article  ADS  Google Scholar 

  190. H. Kusunose, Y. Fuseya, K. Miyake, On the puzzle of odd-frequency superconductivity. J. Phys. Soc. Jap. 80, 054702 (2011)

    Article  ADS  Google Scholar 

  191. I. Sosnin, H. Cho, V.T. Petrashov, A.F. Volkov, Superconducting phase coherent electron transport in proximity conical ferromagnets. Phys. Rev. Lett. 96, 157002 (2006)

    Article  ADS  Google Scholar 

  192. J.W.A. Robinson, J.D.S. Witt, M.G. Blamire, Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010)

    Article  ADS  Google Scholar 

  193. R.S. Keizer, S.T.B. Goennenwein, T.M. Klapwijk, G. Miao, G. Xiao, A. Gupta, A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006)

    Article  ADS  Google Scholar 

  194. M.S. Anwar, J. Aarts, Inducing supercurrents in thin films of ferromagnetic CrO2. Supercond. Sci. Technol. 24, 024016 (9 pp) (2011)

    Article  ADS  Google Scholar 

  195. M.A. Khasawneh, T.S. Khaire, C. Klose, W.P. Pratt Jr., N.O. Birge, Spin-triplet supercurrent in Co-based Josephson junctions. Supercond. Sci. Technol. 24, 024005 (7 pp) (2011)

    Article  ADS  Google Scholar 

  196. Y. Kalcheim, O. Millo, M. Egilmez, J.W.A. Robinson, M.G. Blamire, Evidence for anisotropic triplet superconductor order parameter in half-metallic ferromagnetic La0.7Ca0.3Mn3O proximity coupled to superconducting Pr1.85Ce0.15CuO4. Phys. Rev. B 85, 104504 (2012)

    Article  ADS  Google Scholar 

  197. J.W.A. Robinson, N. Banerjee, M.G. Blamire, Triplet pair correlations and nonmonotonic supercurrent decay with Cr thickness in Nb/Cr/Fe/Nb Josephson devices. Phys. Rev. B 89, 104505 (2014)

    Article  ADS  Google Scholar 

  198. X.L. Wang, A. Di Bernardo, N. Banerjee, A. Wells, F.S. Bergeret, M.G. Blamire, J.W.A. Robinson, Giant triplet proximity effect in superconducting pseudo spin valves with engineered anisotropy. Phys. Rev. B 89, 140508(R) (2014)

    Article  ADS  Google Scholar 

  199. Z. Feng, J.W.A. Robinson, M.G. Blamire, Out of plane superconducting Nb/Cu/Ni/Cu/Co triplet spin-valves. Appl. Phys. Lett. 111, 042602 (2017)

    Article  ADS  Google Scholar 

  200. A. Pal, J.A. Ouassou, M. Eschrig, J. Linder, M.G. Blamire, Spectroscopic evidence of odd frequency superconducting order. Sci. Rep. 7, 40604 (2017)

    Article  ADS  Google Scholar 

  201. J. Linder, J.W.A. Robinson, Superconducting spintronics. Nat. Phys. 11, 307–315 (2015)

    Article  Google Scholar 

  202. W.M. Martinez, W.P. Pratt Jr., N.O. Birge, Amplitude control of spin-triplet supercurrent in S/F/S Josephson junctions. Phys. Rev. Lett. 116, 077001 (2016)

    Article  ADS  Google Scholar 

  203. J.A. Glick, S. Edwards, D. Korucu, V. Aguilar, B.M. Niedzielski, R. Loloee, W.P. Pratt Jr., N.O. Birge, P.G. Kotula, N. Missert, Spin-triplet supercurrent in Josephson junctions containing a synthetic antiferromagnet with perpendicular magnetic anisotropy. Phys. Rev. B 96, 224515 (2017)

    Article  ADS  Google Scholar 

  204. L. Komendová, A.M. Black-Schaffer, Odd-frequency superconductivity in Sr2RuO4 measured by kerr rotation. Phys. Rev. Lett. 119, 087001 (2017)

    Article  ADS  Google Scholar 

  205. M. Houzet, A.I. Buzdin, Long range triplet Josephson effect through a ferromagnetic trilayer. Phys. Rev. B 76, 060504(R) (2007)

    Article  ADS  Google Scholar 

  206. Y. Tanaka, Y. Tanuma, A.A. Golubov, Odd-frequency pairing in normal-metal/superconductor junctions. Phys. Rev. B 76, 054522 (2007)

    Article  ADS  Google Scholar 

  207. J. Linder, T. Yokoyama, A. Sudbø, M. Eschrig, Pairing symmetry conversion by spin-active interfaces in magnetic normal-metal–superconductor junctions. Phys. Rev. Lett. 102, 107008 (2009)

    Article  ADS  Google Scholar 

  208. J. Linder, A. Sudbø, T. Yokoyama, R. Grein, M. Eschrig, Signature of odd-frequency pairing correlations induced by a magnetic interface. Phys. Rev. B 81, 214504 (2010)

    Article  ADS  Google Scholar 

  209. K. Lahabi, M. Amundsen, J.A. Ouassou, E. Beukers, M. Pleijster, J. Linder, P. Alkemade, J. Aarts, Controlling supercurrents and their spatial distribution in ferromagnets. Nat. Commun. 8, 2056 (2017)

    Article  ADS  Google Scholar 

  210. Y.M. Blanter, F.W.J. Hekking, Supercurrent in long SFFS junctions with antiparallel domain configuration. Phys. Rev. B 69, 024525 (2004)

    Article  ADS  Google Scholar 

  211. J.W.A. Robinson, G.B. Halasz, A.I. Buzdin, M.G. Blamire, Enhanced supercurrents in Josephson junctions containing nonparallel ferromagnetic domains. Phys. Rev. Lett. 104, 207001 (2010)

    Article  ADS  Google Scholar 

  212. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Enhancement of the Josephson current by an exchange field in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 3140–3143 (2001)

    Article  ADS  Google Scholar 

  213. Yu.S. Barash, I.V. Bobkova, T. Kopp, Josephson current in S-FIF-S junctions: nonmonotonic dependence on misorientation angle. Phys. Rev. B 66, 140503 (2002)

    Google Scholar 

  214. V.N. Krivoruchko, E.A. Koshina, From inversion to enhancement of the dc Josephson current in S/F-I-F/S tunnel structures. Phys. Rev. B 64, 172511 (2001)

    Article  ADS  Google Scholar 

  215. A.A. Golubov, M.Yu. Kupriyanov, Ya.V. Fominov, Critical current in SFIFS junctions. JETP Lett. 75, 190–194 (2002)

    Article  ADS  Google Scholar 

  216. B. Baek, W.H. Rippard, S.P. Benz, S.E. Russek, P.D. Dresselhaus, Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014)

    Article  ADS  Google Scholar 

  217. B. Baek, W.H. Rippard, M.R. Pufall, S.P. Benz, S.E. Russek, H. Rogalla, P.D. Dresselhaus, Spin-transfer torque switching in nanopillar superconducting-magnetic hybrid Josephson junctions. Phys. Rev. Appl. 3, 011001 (2015)

    Article  ADS  Google Scholar 

  218. R.K. Singh, N.D. Rizzo, A. Boochakravarthy, N. Newman, Large uniaxial anisotropy induced in soft ferromagnetic thin films by oblique deposition of underlayer. IEEE Magn. Lett. 9, 5101305 (2018)

    Google Scholar 

  219. M.L. Schneider, C.A. Donnelly, S.E. Russek, B. Baek, M.R. Pufall, P.F. Hopkins, P.D. Dresselhaus, S.P. Benz, W.H. Rippard, Ultralow power artificial synapses using nanotextured magnetic Josephson junctions. Sci. Adv. 4, e1701329 (2018)

    Article  ADS  Google Scholar 

  220. B.M. Niedzielski, T.J. Bertus, J.A. Glick, R. Loloee, W.P. Pratt Jr., N.O. Birge, Spin-valve Josephson junctions for cryogenic memory. Phys. Rev. B 97, 024517 (2018)

    Article  ADS  Google Scholar 

  221. C. Bell, G. Burnell, C.W. Leung, E.J. Tarte, D.-J. Kang, M.G. Blamire, Controllable Josephson current through a pseudospin-valve structure. Appl. Phys. Lett. 84, 1153–1155 (2004)

    Article  ADS  Google Scholar 

  222. I.P. Nevirkovets, O.A. Mukhanov, Peculiar interference pattern of Josephson junctions involving periodic ferromagnet-normal metal structure. Supercond. Sci. Technol. 31, 03LT01 (2018)

    Article  Google Scholar 

  223. T. Inoue, Superconductor magnetic memory cell and method for accessing the same. US Patent 5276638 (1994)

    Google Scholar 

  224. R. Held, J. Xu, A. Schmehl, C.W. Schneider, J. Mannhart, M.R. Beasley, Superconducting memory based on ferromagnetism. Appl. Phys. Lett. 89, 163509 (2006)

    Article  ADS  Google Scholar 

  225. I.P. Nevirkovets, O.A. Mukhanov, Possible use of a multi-terminal superconducting-ferromagnetic device as a memory cell, in Proceedings of 16th International Superconductive Electronics Conference, ISEC’2017, Sorrento, Italy, June 12–16, 2017; TU-SDM-06

    Google Scholar 

  226. I.P. Nevirkovets, O.A. Mukhanov, A memory cell for high density arrays based on multi-terminal superconducting-ferromagnetic device. Phys. Rev. Appl. 10, 034013 (2018)

    Article  ADS  Google Scholar 

  227. I.P. Nevirkovets, S.E. Shafraniuk, O.A. Mukhanov, A multi-terminal superconducting-ferromagnetic device with magnetically-tunable supercurrent for memory application. IEEE Trans. Appl. Supercond. 28, 1–4 (2018)

    Article  Google Scholar 

  228. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  229. M. Tsoi, A.G.M. Jansen, J. Bass, W.C. Chiang, M. Seck, V. Tsoi, P. Wyder, Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998)

    Article  ADS  Google Scholar 

  230. R. Sbiaa, S.N. Piramanayagam, Recent developments in spin transfer torque MRAM. Phys. Stat. Sol. RRL 11, 1700163 (2017)

    Article  Google Scholar 

  231. T.W. Clinton, M. Johnson, Nonvolatile switchable Josephson junctions. J. Appl. Phys. 85, 1637–1643 (1999)

    Article  ADS  Google Scholar 

  232. T.W. Clinton, M. Johnson, Magnetoquenched superconducting valve with bilayer ferromagnetic film for uniaxial switching. Appl. Phys. Lett. 76, 2116–2118 (2000)

    Article  ADS  Google Scholar 

  233. Q. Li, J.R. Clem, D.K. Finnemore, Nucleation and motion of an isolated Abrikosov vortex. Phys. Rev. B 43, 12843–12847 (1991)

    Article  ADS  Google Scholar 

  234. A.V. Samokhvalov, S.N. Vdovichev, B.A. Gribkov, S.A. Gusev, AYu. Klimov, YuN Nozdrin, V.V. Rogov, A.A. Fraerman, S.V. Egorov, V.V. Bol’ginov, A.B. Shkarin, V.S. Stolyarov, Properties of Josephson junctions in the nonuniform field of ferromagnetic particles. JETP Lett. 95, 104–113 (2012)

    Article  ADS  Google Scholar 

  235. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)

    Article  ADS  Google Scholar 

  236. L. Ye, D.B. Gopman, L. Rehm, D. Backes, G. Wolf, T. Ohki, A.F. Kirichenko, I.V. Vernik, O.A. Mukhanov, A.D. Kent, Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures. J. Appl. Phys. 115, 17C725 (2014)

    Article  Google Scholar 

  237. I.M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M.V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011)

    Article  ADS  Google Scholar 

  238. L.Q. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)

    Article  ADS  Google Scholar 

  239. T. Chiba, G.E.W. Bauer, S. Takahashi, Spin torque transistor revisited. Appl. Phys. Lett. 102, 192412 (2013)

    Article  ADS  Google Scholar 

  240. K.L. Wang, J.G. Alzate, P.K. Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D: Appl. Phys. 46, 074003 (10 pp) (2013)

    ADS  Google Scholar 

  241. M.-H. Nguyen, S. Shi, G.E. Rowlands, S.V. Aradhya, C.L. Jermain, D.C. Ralph, R.A. Buhrman, Efficient switching of 3-terminal magnetic tunnel junctions by the giant spin Hall effect of Pt85Hf15 alloy. Appl. Phys. Lett. 112, 062404 (2018)

    Article  ADS  Google Scholar 

  242. J.W. Lu, E. Chen, M. Kabir, M.R. Stan, S.A. Wolf, Spintronics technology: past, present and future. Int. Mater. Rev. 61, 456–472 (2016)

    Article  Google Scholar 

  243. D.C. Ralph, M.D. Stiles, Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008)

    Article  ADS  Google Scholar 

  244. M.I. Dyakonov, V.I Perel, Possibility of orienting electron spins with currrent. Pis’ma Zh. Eksp. Teor. Fiz. 13, 657–660 (1971); JETP Lett.-USSR 13, 467–469 (1971)

    Google Scholar 

  245. J.E. Hirsh, Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  Google Scholar 

  246. T. Jungwirth, J. Wunderlich, K. Olejník, Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012)

    Article  ADS  Google Scholar 

  247. J. Sinova, I. Žutić, New moves of the spintronic tango. Nat. Mater. 11, 368–371 (2012)

    Article  ADS  Google Scholar 

  248. S. Takahashi, S. Maekawa, Spin Hall effect in superconductors. Jap. J. Appl. Phys. 51, 010110 (2012)

    Article  ADS  Google Scholar 

  249. S. Maekawa, H. Adachi, K.-I. Uchida, J. Ieda, E. Saitoh, Spin current: experimental and theoretical aspects. J. Phys. Soc. Jpn. 82, 102002 (2013)

    Article  ADS  Google Scholar 

  250. N. Zhang, B. Zhang, M.Y. Yang, K.M. Cai, Y. Sheng, Y.C. Li, Y.C. Deng, K.Y. Wang, Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica 66, 027501 (2017)

    Google Scholar 

  251. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  Google Scholar 

  252. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Experimental observation of the spin-Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

  253. J.F. Gibbons, W.E. Beadle, Switching properties of thin NiO films. Solid-State Electron. 7, 785–790 (1964)

    Article  ADS  Google Scholar 

  254. R. Fang, W. Chen, L. Gao, W. Yu, S. Yu, Low-temperature characteristics of HfOx-based resistive random access memory. IEEE Electron Device Lett. 36, 567–569 (2015)

    Article  ADS  Google Scholar 

  255. S. Blonkowski, T. Cabout, Bipolar resistive switching from liquid helium to room temperature. IOP J. Phys. D: Appl. Phys. 48, 345101 (2015)

    Article  Google Scholar 

  256. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 063002 (25 pp) (2016)

    Article  ADS  Google Scholar 

  257. D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Metal oxide resistive switching memory: materials, properties and switching mechanisms. Ceram. Int. 43, S547–S556 (2017)

    Article  Google Scholar 

  258. W. Ma, M.A. Zidan, W.D. Lu, Neuromorphic computing with memristive devices. Sci. China Inf. Sci. 61, 060422 (2018)

    Article  Google Scholar 

  259. H. Greiner, C. Kircher, S. Klepner, S. Lahiri, A. Warnecke, S. Basavaiah, E. Yen, J. Baker, P. Brosious, H. Huang, M. Murakami, I. Ames, Fabrication process for Josephson integrated circuits. IBM J. Res. Dev. 24, 195–205 (1980)

    Article  Google Scholar 

  260. M. Gurvitch, W.A. Washington, H.A. Huggins, High quality refractory Josephson junctions using thin aluminum layers. Appl. Phys. Lett. 42, 472–474 (1983)

    Article  ADS  Google Scholar 

  261. K. Sakai, Y. Takei, R. Yamamoto, N.Y. Yamasaki, K. Mitsuda, M. Hidaka, S. Nagasawa, S. Kohjiro, T. Miyazaki, Baseband feedback frequency-division multiplexing with low-power dc-SQUIDs and digital electronics for TES X-ray microcalorimeters. J. Low Temp. Phys. 176, 400–407 (2014)

    Article  ADS  Google Scholar 

  262. W.H. Chang, The inductance of a superconducting strip transmission line. J. Appl. Phys. 50, 8129–8134 (1979)

    Article  ADS  Google Scholar 

  263. R. Broom, R. Jaggi, O. Mohr, W. Walter, Effect of process variables on electrical properties of Pb-alloy Josephson junctions. IBM J. Res. Dev. 24, 206–211 (1980)

    Article  Google Scholar 

  264. R. Broom, R. Laibowitz, O. Mohr, W. Walter, Fabrication and properties of niobium Josephson tunnel junctions. IBM J. Res. Dev. 24, 212–222 (1980)

    Article  Google Scholar 

  265. M. Hidaka, H. Tsuge, Y. Wada, Thermal stability of Nb/AlOx/Nb Josephson junctions, in Proceedings of International Cryogenic Materials Conference (ICMC87)

    Google Scholar 

  266. S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki, N. Yoshikawa, K. Takagi, N. Takagi, Nb 9-layer fabrication process for superconducting large scale SFQ circuits and its process evaluation. IEICE Trans. Electron. E97-C, 132–140 (2014)

    Article  ADS  Google Scholar 

  267. J. Fujikata, T. Ishi, S. Mori, K. Matsuda, K. Mori, H. Yokota, K. Hayashi, M. Nakada, A. Kamijo, K. Ohashi, Low resistance magnetic tunnel junctions and their interface structures. J. Appl. Phys. 89, 7558–7560 (2001)

    Article  ADS  Google Scholar 

  268. K. Hinode, S. Nagasawa, M. Sugita, T. Satoh, H. Akaike, Y. Kitagawa, M. Hidaka, Straightforward planarization method for multilayered SFQ device fabrication. Physica C 412–414, 1437–1441 (2004)

    Article  ADS  Google Scholar 

  269. S. Nagasawa, T. Satoh, K. Hinode, Y. Kitagawa, M. Hidaka, H. Akaike, A. Fujimaki, K. Takagi, N. Takagi, N. Yoshikawa, New multilayer Nb fabrication process for large-scale SFQ circuits. Phsica C 469, 1578–1584 (2009)

    Article  ADS  Google Scholar 

  270. T. Imamura, T. Shiota, S. Hasuo, Fabrication of high quarity Nb/AlOx-Al/Nb Josephson junctions. IEEE Trans. Appl. Supercond. 2, 1–14 (1992)

    Article  ADS  Google Scholar 

  271. N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Adiabatic quantum-flux-parametron cell library designed using a 10 kA/cm2 niobium fabrication process. Supercond. Sci. Technol. 30, 035002 (2017)

    Article  ADS  Google Scholar 

  272. T. Satou, K. Hinode, S. Nagasawa, Y. Kitagawa, M. Hidaka, N. Yoshikawa, H. Akaike, A. Fujimaki, K. Takagi, N. Takagi, Planarization process for Nb multi-layer integrated circuits incorporating top active layer. IEEE Trans. Appl. Supercond. 19, 167–170 (2009)

    Article  ADS  Google Scholar 

  273. Y. Hashimoto, S. Yorozu, Y. Kameda, V.K. Semenov, A design approach to passive interaconnects for single flux quantum logic circuits. IEEE Trans. Appl. Supercond. 13, 535–538 (2003)

    Article  ADS  Google Scholar 

  274. A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, N. Yoshikawa, Bit-serial single flux quantum microprocessor CORE. IEICE Trans. Electron. E91-C, 342–349 (2008)

    Article  ADS  Google Scholar 

  275. X. Peng, Q. Xu, T. Kato, Y. Yamanashi, N. Yoshikawa, A. Fujimaki, N. Takagi, K. Takagi, M. Hidaka, High-speed demonstration of bit-serial floating-point adders and multipliers using single-flux-quantum circuits. IEEE Trans. Appl. Supercond. 25, 1301106 (2015)

    Article  Google Scholar 

  276. Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, A. Fujimaki, Design and demonstration 8-bit bit serial SFQ microprocessor: core e4. IEEE Trans. Appl. Supercond. 26, 1301205 (2016)

    Article  Google Scholar 

  277. C. Hamilton, K. Gilbert, Margins and yield in single flux quantum logics. IEEE Trans. Appl. Supercond. 1, 157–163 (1991)

    Article  ADS  Google Scholar 

  278. T. Satoh, K. Hinode, H. Akaike, S. Nagasawa, Y. Kitagawa, M. Hidaka, Fabrication process of planarized multi-layer Nb integrated circuits. IEEE Trans. Appl. Supercond. 15, 78–81 (2005)

    Article  ADS  Google Scholar 

  279. K. Hinode, T. Satoh, S. Nagasawa, M. Hidaka, Hydrogen-inclusion-induced variation of critical current in Nb-AlOx-Nb Josephson junctions. J. Appl. Phys. 104, 23909–23914 (2008)

    Article  Google Scholar 

  280. K. Hinode, T. Satoh, S. Nagasawa, M. Hidaka, Origin of hydrogen-inclusion-induced critical current deviation in Nb/AlOx/Al/Nb Josephson junctions. J. Appl. Phy. 107, 073906 (2010)

    Article  ADS  Google Scholar 

  281. M. Hidaka, S. Nagasawa, T. Satoh, K. Hinode, Defects of Nb/AlOx/Nb Josephson junctions caused by underneath fine particles. IEEE Xplore. https://doi.org/10.1109/isec.2015

  282. S. Nagasawa, T. Satoh, M. Hidaka, Uniformity and reproducibility of submicron 20kA/cm2 Nb/AlOx/Nb Josephson junction process. IEEE Xplore. https://doi.org/10.1109/ISEC.2015

  283. M. Tanaka, M. Kozaka, Y. Kita, A. Fujimaki, S. Nagasawa, M. Hidaka, Rapid single-flux-quantum circuits fabricated using 20-kA/cm2 Nb/AlOxNb process. IEEE Trans. Appl. Supercond. 25, 1–4 (2015)

    Google Scholar 

  284. L.J. Zheng, S. Nik, T. Greibe, P. Krantz, C.M. Wilson, P. Delsing, E. Olsson, Direct observation of the thickness distribution of ultra thin AlOx barriers in Al/AlOx/Al Josephson junctions. J. Phys. D Appl. Phys. 48, 395308 (2015)

    Article  Google Scholar 

  285. M. Ikeya, T. Noguchi, T. Kojima, T. Sakai, Low leakage current Nb-based tunnel junctions with an extra top Al layer. IEICE Trans. Electron. E100-C, 291–297 (2017)

    Article  ADS  Google Scholar 

  286. S. Tolpygo, V. Bolkhovsky, T.J. Weir, A. Wynn, D.E. Oates, L.M. Johnson, M.A. Gouker, Advanced fabrication process for superconducting very large scale integrated circuits. IEEE Trans. Appl. Supercond. 26, 1100110 (2016)

    Google Scholar 

  287. T. Ando, S. Nagasawa, N. Takeuchi, N. Tsuji, F. China, M. Hidaka, Y. Yamanashi, N. Yoshikawa, Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Supercond. Sci. Technol. 30, 075003 (2017)

    Article  ADS  Google Scholar 

  288. Y. Hashimoto, S. Yorozu, T. Satoh, T. Miyazaki, Demonstration of chip-to-chip transmission on single-flux-quantum pulses at throughput beyond 100 Gbps. Appl. Phys. Lett. 87, 022502 (2005)

    Article  ADS  Google Scholar 

  289. A. Kawakami, Y. Uzawa, Z. Wang, Development of epitaxial NbN/MgO/NbN-superconductor-insulator-superconductor mixers for operations over the Nb gap frequency. Appl. Phys. Lett. 83, 3954–3956 (2003)

    Article  ADS  Google Scholar 

  290. Z. Wang, H. Terai, W. Qiu, K. Makise, Y. Uzawa, K. Kimoto, Y. Nakamura, High-quality epitaxial NbN/AlN/NbN tunnel junctions with a wide range of current density. Appl. Phys. Lett. 102, 142604-1-4 (2013)

    ADS  Google Scholar 

  291. H. Yamamori, T. Yamada, H. Sasaki, S. Kohjiro, NbN-based overdamped Josephson junctions for quantum voltage standards. IEICE Trans. Electron. E95-C, 329–336 (2012)

    Article  ADS  Google Scholar 

  292. H. Akaike, S. Sakamoto, K. Munemoto, A. Fujimaki, Fabrication of NbTiN/Al/AlNx/NbTiN Josephson junctions for superconducting circuits operating around 10 K. IEEE Trans. Appl. Supercond. 26, 1100805 (2016)

    Article  Google Scholar 

  293. S. Taniguchi, H. Ito, K. Ishikawa, S. Kurokawa, M. Tanaka, H. Akaike, A. Fujimaki, Investigation into the individual configuration of superconducting phase shift elements made of ferromagnetic patterns for reconfigurable circuits. IEEE Trans. Appl. Supercond. 27, 1501204 (2017)

    Article  Google Scholar 

  294. A. Herr, Q. Herr, Josephson magnetic random access memory system and method. US patent US20110267878 A1

    Google Scholar 

  295. G. Fujii, M. Ukibe, S. Shiki, M. Ohkubo, Improvement of soft x-ray detection performance in superconducting-tunnel-junction array detectors with close-packed arrangement by three-dimensional structure. Supercond. Sci. Technol. 28, 104005 (2015)

    Article  ADS  Google Scholar 

  296. H. Terai, S. Nagasawa, S. Miyajima, T. Yamashita, S. Miki, M. Yabuno, M. Hidaka, Design of large-scale superconducting nanowire single-photon detector array monolithically integrated with cryogenic single-flux-quantum signal processor. ASC2016, 3EOr1B-03

    Google Scholar 

  297. M.W. Johnson et al., A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23, 065004 (2010)

    Article  ADS  Google Scholar 

  298. M. Maezawa, K. Imafuku, H. Koike, M. Hidaka, S. Kawabata, Design of quantum annealing Machine for prime factoring. IEEE Xplore, 17631732 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Mukhanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhanov, O., Yoshikawa, N., Nevirkovets, I.P., Hidaka, M. (2019). Josephson Junctions for Digital Applications. In: Tafuri, F. (eds) Fundamentals and Frontiers of the Josephson Effect. Springer Series in Materials Science, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-20726-7_16

Download citation

Publish with us

Policies and ethics