Skip to main content

High Frequency Properties of Josephson Junctions

  • Chapter
  • First Online:
Book cover Fundamentals and Frontiers of the Josephson Effect

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 286))

  • 3671 Accesses

Abstract

In this chapter we will discuss the high frequency properties of Josephson junctions. In the first part we review the effect of a large ac perturbation on the current voltage characteristic (IVC) of a Josephson junction. Here we follow closely the original treatment by Barone and Paterno [1]. For large ac perturbations the externally applied microwave frequency (and integer multiples of it) lock to the Josephson oscillation causing distinct current steps at fixed voltage values in the IVC. In the second part we give a short overview on the response of an underdamped Josephson junction to small microwave perturbations. In this case, when the applied microwave frequency is in resonance with the electromagnetic plasma frequency higher levels of this plasma mode get excited. This mechanism, also called resonant activation, leads for instance to a premature switching from the zero voltage state to the finite voltage state of a current biased Josephson junction. This procedure can be exploited to detect the quantized nature, i.e. the quantized energy levels, of the plasma modes. In fact the lowest two quantized energy levels of the plasma resonance mode are the key ingredient of superconducting qubits, such as the phase qubit and the transmon qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  2. M. Abramowitz, I.A. Stegun et al., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55 (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  3. D.N. Langenberg, D.J. Scalapino, B.N. Taylor, Josephson-type superconducting tunnel junctions as generators of microwave and submillimeter wave radiation. Proc. IEEE 54(4), 560–575 (1966)

    Article  Google Scholar 

  4. S. Shapiro, A.R. Janus, S. Holly, Effect of microwaves on Josephson currents in superconducting tunneling. Rev. Mod. Phys. 36, 223–225 (1964)

    Article  ADS  Google Scholar 

  5. C.A. Hamilton, S. Shapiro, RF-induced effects in superconducting tunnel junctions. Phys. Rev. B 2, 4494–4503 (1970)

    Article  ADS  Google Scholar 

  6. C.C. Grimes, S. Shapiro, Millimeter-wave mixing with Josephson junctions. Phys. Rev. 169, 397–406 (1968)

    Article  ADS  Google Scholar 

  7. J.C. Swihart, Field solution for a thin film superconducting strip transmission line. J. Appl. Phys. 32(3), 461–469 (1961)

    Article  ADS  Google Scholar 

  8. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55 (Courier Corporation, New York, 1965)

    MATH  Google Scholar 

  9. T. Pech, J. Saint-Michel, Design of stable thin-film Josephson tunnel junctions for the maintenance of voltage standards. IEEE Trans. Magn. 11(2), 817–820 (1975)

    Article  ADS  Google Scholar 

  10. P. Somervuo, Y. Sirkeinen, Simple method of determining the external signal voltage in Josephson junctions. J. Appl. Phys. 46(3), 1415–1416 (1975)

    Article  ADS  Google Scholar 

  11. V.N. Belykh, N.F. Pedersen, O.H. Soerensen, Shunted-Josephson-junction model. ii. The nonautonomous case. Phys. Rev. B 16, 4860–4871 (1977)

    Article  ADS  Google Scholar 

  12. C.A. Hamilton, Analog simulation of a Josephson junction. Rev. Sci. Instrum. 43(3), 445–447 (1972)

    Article  ADS  Google Scholar 

  13. P. Russer, Influence of microwave radiation on current voltage characteristic of superconducting weak links. J. Appl. Phys. 43(4), 2008–2010 (1972)

    Article  ADS  Google Scholar 

  14. H.-D. Hahlbohm, A. Hoffmann, H. Lübbig, H. Luther, S. Seeck, Calculation of rf-induced current voltage characteristics of a measured Josephson tunnel junction. Phys. Status Solidi A 13(2), 607–612 (1972)

    Article  ADS  Google Scholar 

  15. L.G. Aslamazov, A.I. Larkin, Josephson effect in superconducting point contacts. ZhETF Pisma Redaktsiiu 9, 150 (1969)

    ADS  Google Scholar 

  16. H. Kanter, F.L. Vernon, High frequency response of Josephson point contacts. J. Appl. Phys. 43(7), 3174–3183 (1972)

    Article  ADS  Google Scholar 

  17. C.K. Bak, N.F. Pedersen, Josephson junction analog and quasiparticle pair current. Appl. Phys. Lett. 22(4), 149–150 (1973)

    Article  ADS  Google Scholar 

  18. G. Tkachov, E.M. Hankiewicz, Helical Andreev bound states and superconducting Klein tunneling in topological insulator Josephson junctions. Phys. Rev. B 88, 075401 (2013)

    Article  ADS  Google Scholar 

  19. H.-J. Kwon, K. Sengupta, V.M. Yakovenko, Fractional ac Josephson effect in p- and d-wave superconductors. Eur. Phys. J. B 37(3), 349–361 (2004)

    Article  ADS  Google Scholar 

  20. L. Fu, C.L. Kane, Josephson current and noise at a superconductor/quantum-spin-hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009)

    Article  ADS  Google Scholar 

  21. Le Calvez et al., Commun. Phys. 2, 4 (2019). https://doi.org/10.1038/s42005-018-0100-x

  22. Dominguez et al., Phys. Rev. B 95, 195430 (2017). https://link.aps.org/doi/10.1103/PhysRevB.95.195430

  23. E. Bocquillon, R.S. Deacon, J. Wiedenmann, P. Leubner, T.M. Klapwijk, C. Brüne, K. Ishibashi, H. Buhmann, L.W. Molenkamp, Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 12, 137 (2016)

    Article  ADS  Google Scholar 

  24. R.S. Deacon, J. Wiedenmann, E. Bocquillon, F. Domínguez, T.M. Klapwijk, P. Leubner, C. Brüne, E.M. Hankiewicz, S. Tarucha, K. Ishibashi, H. Buhmann, L.W. Molenkamp, Josephson radiation from gapless Andreev bound states in HgTe-based topological junctions. Phys. Rev. X 7, 021011 (2017)

    Google Scholar 

  25. Wiedenmann et al., Nat. Commun. 7, 10303 (2016). https://doi.org/10.1038/ncomms10303

  26. M. Tinkham, Introduction to Superconductivity (Courier Corporation, New York, 2004)

    Google Scholar 

  27. C. Kaiser, T. Bauch, F. Lombardi, M. Siegel, Quantum phase dynamics in an LC shunted Josephson junction. J. Appl. Phys. 109(9), 093915 (2011)

    Article  ADS  Google Scholar 

  28. M.H. Devoret, J.M. Martinis, J. Clarke, Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1908–1911 (1985)

    Article  ADS  Google Scholar 

  29. J.M. Martinis, M.H. Devoret, J. Clarke, Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987)

    Article  ADS  Google Scholar 

  30. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Büttiker, E.P. Harris, R. Landauer, Thermal activation in extremely underdamped Josephson-junction circuits. Phys. Rev. B 28, 1268–1275 (1983)

    Article  ADS  Google Scholar 

  32. A.O. Caldeira, A.J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981)

    Article  ADS  Google Scholar 

  33. T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, F. Lombardi, Quantum dynamics of a d-wave Josephson junction. Science 311(5757), 57–60 (2006)

    Article  ADS  Google Scholar 

  34. A. Wallraff, T. Duty, A. Lukashenko, A.V. Ustinov, Multiphoton transitions between energy levels in a current-biased Josephson tunnel junction. Phys. Rev. Lett. 90, 037003 (2003)

    Article  ADS  Google Scholar 

  35. J.M. Martinis, M.H. Devoret, J. Clarke, Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1543–1546 (1985)

    Article  ADS  Google Scholar 

  36. T.A. Fulton, L.N. Dunkleberger, Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760–4768 (1974)

    Article  ADS  Google Scholar 

  37. G. Rotoli, T. Bauch, T. Lindstrom, D. Stornaiuolo, F. Tafuri, F. Lombardi, Classical resonant activation of a Josephson junction embedded in an LC circuit. Phys. Rev. B 75, 144501 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Bauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauch, T., Trabaldo, E., Lombardi, F. (2019). High Frequency Properties of Josephson Junctions. In: Tafuri, F. (eds) Fundamentals and Frontiers of the Josephson Effect. Springer Series in Materials Science, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-20726-7_12

Download citation

Publish with us

Policies and ethics