Skip to main content

Simulating Droplet Microfluidic Networks

  • Chapter
  • First Online:
Designing Droplet Microfluidic Networks
  • 602 Accesses

Abstract

When designing a droplet microfluidic network, a huge number of parameters have to be considered, which finally have to implement the desired functionality. This results in a complex task as design parameters often depend on and affect each other. In order to handle this complex task, models and simulation methods can be employed in the design process. These models and simulation methods allow for deriving the design, for validating the functionality of the design, and for exploring alternative designs.

However, state-of-the-art simulation tools come with severe limitations, which prevent their utilization for practically relevant applications. More precisely, they are often not dedicated to droplet microfluidics, cannot handle the required physical phenomena, are not publicly available, and can hardly be extended. To address these shortcomings, this chapter introduces an advanced simulation framework at the one-dimensional analysis model, which, eventually, allows to simulate practically relevant applications.

In order to describe the advanced simulation framework, this chapter first reviews abstraction levels—especially the one-dimensional analysis model. Based on that, an advanced simulation framework is proposed, which is finally applied for the design of a practically relevant microfluidic network. A case study demonstrates that using the proposed simulation framework allows to reduce the manual design time and costs, e.g., of a drug screening device from one person month and USD 1200, respectively, to just a fraction of that.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, further details on the maximal possible pressure are provided later when possible designs are explored using simulation.

References

  1. Ansys Inc., Ansys Fluent Theory Guide (Ansys Inc., Canonsburg, 2011), p. 794

    Google Scholar 

  2. M.D. Behzad, H. Seyed-Allaei, M.R. Ejtehadi, Simulation of droplet trains in microfluidic networks. Phys. Rev. E 82(3), 037303 (2010)

    Google Scholar 

  3. A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)

    Article  Google Scholar 

  4. A. Biral, D. Zordan, A. Zanella, Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)

    Article  Google Scholar 

  5. H. Bruus, Theoretical Microfluidics, vol. 18 (Oxford University Press, Oxford, 2008)

    Google Scholar 

  6. G. Castorina, M. Reno, L. Galluccio, A. Lombardo, Microfluidic networking: switching multidroplet frames to improve signaling overhead. Nano Commun. Netw. 14, 48–59 (2017)

    Article  Google Scholar 

  7. X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)

    Article  Google Scholar 

  8. Comsol Multiphysics, Comsol Multiphysics User Guide (version 4.3 a). COMSOL AB, 2012), pp. 39–40

    Google Scholar 

  9. O. Cybulski, P. Garstecki, Dynamic memory in a microfluidic system of droplets traveling through a simple network of microchannels. Lab Chip 10(4), 484–493 (2010)

    Article  Google Scholar 

  10. W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Droplet traffic at a simple junction at low capillary numbers. Phys. Rev. Lett. 95(20), 208304 (2005)

    Google Scholar 

  11. M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)

    Article  Google Scholar 

  12. P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)

    Article  Google Scholar 

  13. T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)

    Article  Google Scholar 

  14. T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)

    Article  Google Scholar 

  15. T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)

    Article  Google Scholar 

  16. N. Gleichmann, D. Malsch, P. Horbert, T. Henkel, Toward microfluidic design automation: a new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Microfluid. Nanofluid. 18(5–6), 1095–1105 (2015)

    Article  Google Scholar 

  17. G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3 (JHU Press, Baltimore, 2012)

    MATH  Google Scholar 

  18. C.J. Greenshields, Openfoam User Guide, version, 3(1) (OpenFOAM Foundation Ltd, 2015)

    Google Scholar 

  19. A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)

    Article  Google Scholar 

  20. A. Grimmer, M. Hamidović, W. Haselmayr, R. Wille, Advanced simulation of droplet microfluidics. J. Emerg. Technol. Comput. Syst. 15(3), 26:1–26:16 (2019). https://doi.org/10.1145/3313867

    Article  Google Scholar 

  21. H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)

    Article  Google Scholar 

  22. F. Jousse, G. Lian, R. Janes, J. Melrose, Compact model for multi-phase liquid–liquid flows in micro-fluidic devices. Lab Chip 5(6), 646–656 (2005)

    Article  Google Scholar 

  23. F. Jousse, R. Farr, D.R. Link, M.J. Fuerstman, P. Garstecki, Bifurcation of droplet flows within capillaries. Phys. Rev. E 74(3), 036311 (2006)

    Google Scholar 

  24. T. Mohamed, T. Hoang, M. Jelokhani-Niaraki, P.P. Rao, Tau-derived-hexapeptide 306vqivyk311 aggregation inhibitors: nitrocatechol moiety as a pharmacophore in drug design. ACS Chem. Neurosci. 4(12), 1559–1570 (2013)

    Article  Google Scholar 

  25. K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)

    Article  Google Scholar 

  26. M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008)

    Google Scholar 

  27. D. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin, P. Panizza, Droplet motion in microfluidic networks: hydrodynamic interactions and pressure-drop measurements. Phys. Rev. E 80(1), 016317 (2009)

    Google Scholar 

  28. D. Sessoms, A. Amon, L. Courbin, P. Panizza, Complex dynamics of droplet traffic in a bifurcating microfluidic channel: periodicity, multistability, and selection rules. Phys. Rev. Lett. 105(15), 154501 (2010)

    Google Scholar 

  29. M.G. Simon, R. Lin, J.S. Fisher, A.P. Lee, A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. Biomicrofluidics 6(1), 014110 (2012)

    Article  Google Scholar 

  30. B.J. Smith, D.P. Gaver, III, Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network. Lab Chip 10(3), 303–312 (2010)

    Article  Google Scholar 

  31. K. Song, G. Hu, X. Hu, R. Zhong, X. Wang, B. Lin, Encoding and controlling of two droplet trains in a microfluidic network with the loop-like structure. Microfluid. Nanofluid. 19(6), 1363 (2015)

    Article  Google Scholar 

  32. S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)

    Article  Google Scholar 

  33. W. Wang, C. Yang, C.M. Li, On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11), 1504–1506 (2009)

    Article  Google Scholar 

  34. J. Wang, V.G. Rodgers, P. Brisk, W.H. Grover, Instantaneous simulation of fluids and particles in complex microfluidic devices. PLoS One 12(12), 1–14 (2017)

    Google Scholar 

  35. M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimmer, A., Wille, R. (2020). Simulating Droplet Microfluidic Networks. In: Designing Droplet Microfluidic Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-20713-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20713-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20712-0

  • Online ISBN: 978-3-030-20713-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics