Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Designing Droplet Microfluidic Networks

Abstract

This chapter provides an introduction into microfluidics in general and droplet microfluidic networks in particular. It briefly reviews the state-of-the-art design process for such devices and discusses the contributions made in this book to improve it. By this, the chapter gives an overview of the book and its contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The implementation of the simulator is available at http://iic.jku.at/eda/research/microfluidics _simulation/.

  2. 2.

    The tool can be accessed at http://iic.jku.at/eda/research/meander_designer/.

  3. 3.

    A bypass channel [20] connects the endpoints of the two successor channels. This bypass cannot be entered by any droplet and is used to make the droplet routing only dependent on the resistances of the successors.

  4. 4.

    Note that simulation as proposed in Chap. 3 often also provides the basis for other contributions (cf. Chap. 4 or 8) and, hence, is covered right after the Background in Chap. 3.

References

  1. A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)

    Article  Google Scholar 

  2. X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)

    Article  Google Scholar 

  3. G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)

    Article  Google Scholar 

  4. M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)

    Article  Google Scholar 

  5. T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)

    Article  MATH  Google Scholar 

  6. T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)

    Article  Google Scholar 

  7. T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)

    Article  Google Scholar 

  8. A. Grimmer, W. Haselmayr, A. Springer, R. Wille, A discrete model for Networked Labs-on-Chips: linking the physical world to design automation, in Design Automation Conference (2017), pp. 50:1–50:6

    Google Scholar 

  9. A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Verification of Networked Labs-on-Chip architectures, in Design, Automation and Test in Europe (2017), pp. 1679–1684

    Google Scholar 

  10. A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, R. Wille, Close-to-optimal placement and routing for continuous-flow microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017), pp. 530–535

    Google Scholar 

  11. A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)

    Article  Google Scholar 

  12. A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)

    Article  Google Scholar 

  13. A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Design of application-specific architectures for Networked Labs-on-Chips. Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1), 193–202 (2018)

    Article  Google Scholar 

  14. A. Grimmer, W. Haselmayr, R. Wille, Automated dimensioning of Networked Labs-on-Chip. Trans. Comput. Aided Des. Integr. Circuits Syst. (2018). https://doi.org/10.1109/TCAD.2018.2834402

    Article  Google Scholar 

  15. A. Grimmer, W. Haselmayr, R. Wille, Automatic droplet sequence generation for microfluidic networks with passive droplet routing. Trans. Comput. Aided Des. Integr. Circuits Syst. (2018). https://doi.org/10.1109/TCAD.2018.2887055

  16. A. Grimmer, M. Hamidović, W. Haselmayr, R. Wille, Advanced simulation of droplet microfluidics. J. Emerg. Technol. Comput. Syst. 15(3), 26:1–26:16 (2019). https://doi.org/10.1145/3313867

    Article  Google Scholar 

  17. D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)

    Article  Google Scholar 

  18. D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in International Conference on Very Large Scale Integration of System-on-Chip (2012), pp. 177–182

    Google Scholar 

  19. H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)

    Article  Google Scholar 

  20. S. Haeberle, R. Zengerle, Microfluidic platforms for Lab-on-a-Chip applications. Lab Chip 7, 1094–1110 (2007)

    Article  Google Scholar 

  21. Y.-L. Hsieh, T.-Y. Ho, K. Chakrabarty, Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 183–196 (2014)

    Article  Google Scholar 

  22. K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)

    Article  Google Scholar 

  23. W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, P. Pop, Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips, in Design, Automation and Test in Europe (2017), pp. 1671–1676

    Google Scholar 

  24. O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Design Automation Conference (2014), pp. 1–6

    Google Scholar 

  25. O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017)

    Google Scholar 

  26. E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. J. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)

    Article  Google Scholar 

  27. J. McDaniel, B. Crites, P. Brisk, W.H. Grover, Flow-layer physical design for microchips based on monolithic membrane valves. J. Des. Test 32(6), 51–59 (2015)

    Google Scholar 

  28. W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2011), pp. 225–233

    Google Scholar 

  29. W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2012), pp. 181–190

    Google Scholar 

  30. D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)

    Article  Google Scholar 

  31. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  32. K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)

    Article  Google Scholar 

  33. S. Poddar, S. Ghoshal, K. Chakrabarty, B.B. Bhattacharya, Error-correcting sample preparation with cyberphysical digital microfluidic Lab-on-Chip. Trans. Des. Autom. Electron. Syst. 22(1), 2 (2016)

    Article  Google Scholar 

  34. M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)

    Article  Google Scholar 

  35. P. Pop, I.E. Araci, K. Chakrabarty, Continuous-flow biochips: technology, physical-design methods, and testing. J. Des. Test 32(6), 8–19 (2015)

    Google Scholar 

  36. S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, High-throughput dilution engine for sample preparation on digital microfluidic biochips. IET Comput. Digit. Tech. 8(4), 163–171 (2014)

    Article  Google Scholar 

  37. M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008)

    Google Scholar 

  38. M.F. Schmidt, W.H. Minhass, P. Pop, J. Madsen, Modeling and simulation framework for flow-based microfluidic biochips, in Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (2013), pp. 1–6

    Google Scholar 

  39. F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)

    Article  Google Scholar 

  40. F. Su, S. Ozev, K. Chakrabarty, Testing of droplet-based microelectrofluidic systems, in International Test Conference, vol. 46 (2003), pp. 1192–1200

    Google Scholar 

  41. F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Design, Automation and Test in Europe, vol. 1 (2006), pp. 1–6

    Google Scholar 

  42. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  43. K.-H. Tseng, S.-C. You, J.-Y. Liou, T.-Y. Ho, A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization, in International Symposium on Physical Design (2013), pp. 123–129

    Google Scholar 

  44. S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)

    Article  Google Scholar 

  45. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  46. R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker, Scalable one-pass synthesis for digital microfluidic biochips. J. Des. Test 32(6), 41–50 (2015)

    Google Scholar 

  47. M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)

    Article  Google Scholar 

  48. T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Design Automation Conference (2007), pp. 948–953

    Google Scholar 

  49. Y. Zhao, K. Chakrabarty, Design and Testing of Digital Microfluidic Biochips (Springer, New York, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimmer, A., Wille, R. (2020). Introduction. In: Designing Droplet Microfluidic Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-20713-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20713-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20712-0

  • Online ISBN: 978-3-030-20713-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics