Skip to main content

A Review of the Roles of Digital Twin in CPS-Based Production Systems

  • Chapter
  • First Online:
Value Based and Intelligent Asset Management

Abstract

The Digital Twin (DT) is one of the main concepts associated to the Industry 4.0 wave. This term is more and more used in industry and research initiatives; however, the scientific literature does not provide a unique definition of this concept. The chapter aims at analyzing the definitions of the DT concept in scientific literature, retracing it from the initial conceptualization in the aerospace field, to the most recent interpretations in the manufacturing domain and more specifically in Industry 4.0 and smart manufacturing research. DT provides virtual representations of systems along their lifecycle. Optimizations and decisions making would then rely on the same data that are updated in real-time with the physical system, through synchronization enabled by sensors. The chapter also proposes the definition of DT for Industry 4.0 manufacturing, elaborated by the European H2020 project MAYA, as a contribution to the research discussion about DT concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, J., Bagheri, B., & Kao, H. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

    Article  Google Scholar 

  2. Ashton, K. (2009). That ‘Internet of Things’ thing. RFiD Journal, 22, 97–114.

    Google Scholar 

  3. Sarma, S., Brock, D. L., & Ashton, K. (2000). The networked physical world.

    Google Scholar 

  4. Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal Mechanical, Aerospace, Industrial, Mechatronics Engineering, 8, 37–44.

    Google Scholar 

  5. Jazdi, N. (2014). Cyber Physical Systems in the context of Industry 4.0. In 2014 IEEE International Conference on Automation, Quality and Testing, Robotics (pp. 1–4). https://doi.org/10.1109/aqtr.2014.6857843.

  6. Baheti, R., & Gill, H. (2011) Cyber-Physical Systems. In T. Samad & A. Annaswamy (Eds.), Impact Control Technology, IEEE Control Systems Society (pp. 161–166).

    Google Scholar 

  7. Garetti, M., Fumagalli, L., & Negri, E. (2015). Role of ontologies for CPS implementation in manufacturing. MPER—Management and Production Engineering Review, 6, 26–32. https://doi.org/10.1515/mper-2015-0033.

    Article  Google Scholar 

  8. Negri, E., Fumagalli, L., Garetti, M., & Tanca, L. (2016). Requirements and languages for the semantic representation of manufacturing systems. Computers in Industry, 81, 55–66. https://doi.org/10.1016/j.compind.2015.10.009.

    Article  Google Scholar 

  9. Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 43, 907–928. http://www.sciencedirect.com/science/article/pii/S1071581985710816. Accessed September 29, 2014.

    Article  Google Scholar 

  10. Legat, C., Seitz, C., Lamparter, S., & Feldmann, S. (2014). Semantics to the shop floor: Towards ontology modularization and reuse in the automation domain. In Proceedings of 19th IFAC World Congress 2014 (pp. 3444–3449). http://www.researchgate.net/publication/261361140_Semantics_to_the_Shop_Floor_Towards_Ontology_Modularization_and_Reuse_in_the_Automation_Domain.

  11. Borgo, S. (2014). An ontological approach for reliable data integration in the industrial domain. Computers in Industry, 65, 1242–1252. https://doi.org/10.1016/j.compind.2013.12.010.

    Article  Google Scholar 

  12. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., et al. (2008). Ontology reasoning with large data repository. In: Ontology Management (pp. 89–128). Springer US.

    Google Scholar 

  13. Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering, 47, 145–156. https://doi.org/10.1016/j.compchemeng.2012.06.037.

    Article  Google Scholar 

  14. Lee, J., Kao, H., & Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 3–8. https://doi.org/10.1016/j.procir.2014.02.001.

    Article  Google Scholar 

  15. Jasperneite, J. (2012). Was hinter Begriffen wie Industrie 4.0 steckt. Internet Und Automation, 12, 12.

    Google Scholar 

  16. Shafto, M., Conroy, M., R. Doyle, E. Glaessgen, C. Kemp, LeMoigne, J., et al. (2010). DRAFT Modeling, Simulation, Information Technology & Processing Roadmap. Technology Area 11.

    Google Scholar 

  17. Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Kemp, C., LeMoigne, J., et al. (2012). Modeling, simulation, information technology & processing roadmap. Technology Area 11.

    Google Scholar 

  18. Glaessgen, E. H., & Stargel, D. S. (2012). The digital twin paradigm for future NASA and U. S. Air Force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1818). https://doi.org/10.2514/6.2012-1818.

  19. Tuegel, E. J. (2012). The airframe digital twin : Some challenges to realization. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1812). https://doi.org/10.2514/6.2012-1812.

  20. Gockel, B. T., Tudor, A. W., Brandyberry, M .D., Penmetsa, R. C., & Tuegel, E. J. (2012) Challenges with structural life forecasting using realistic mission profiles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1813). https://doi.org/10.2514/6.2012-1813.

  21. Reifsnider, K., & Majumdar, P. (2013). Multiphysics stimulated simulation digital twin methods for fleet management. In AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1578). https://doi.org/10.2514/6.2013-1578.

  22. Ríos, J., Hernandez, J. C., Oliva, M., & Mas, F. (2015). Product avatar as digital counterpart of a physical individual product : Literature review and implications in an aircraft. In ISPE CE (pp. 657–666).

    Google Scholar 

  23. Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1, 38–41. https://doi.org/10.1016/j.mfglet.2013.09.005.

    Article  Google Scholar 

  24. Majumdar, P., FasalHaider, M., & Reifsnider, K. (2013). Multi-physics response of structural composites and framework for modeling using material geometry. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1577). https://doi.org/10.2514/6.2013-1577.

  25. Rosen, R., Von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015) About the importance of autonomy and digital twins for the future of manufacturing. In IFAC-PapersOnLine (pp. 567–572). Elsevier Ltd. https://doi.org/10.1016/j.ifacol.2015.06.141.

    Article  Google Scholar 

  26. Bielefeldt, B., Hochhalter, J., & Hartl, D. (2015). Computationally efficient analysis of SMA sensory particles embedded in complex aerostructures using a substructure approach. In ASME Proceedings of Mechanics and Behavior of Active Materials (pp. V001T02A007–10 pp).

    Google Scholar 

  27. Bazilevs, Y., Deng, X., Korobenko, A., Lanza di Scalea, F., Todd, M. D., & Taylor, S. G. (2015). Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. Journal of Applied Mechanics, 82, 1–12. https://doi.org/10.1115/1.4030795.

    Article  Google Scholar 

  28. Schluse, M., & Rossmann, J. (2016). From simulation to experimentable Digital Twins. In 2016 IEEE International Symposium on Systems Engineering (pp. 1–6).

    Google Scholar 

  29. Canedo, A. (2016). Industrial IoT lifecycle via digital twins. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (p. 29).

    Google Scholar 

  30. Gabor, T., Belzner, L., Kiermeier, M., Beck, M. T., & Neitz, A. (2016). A simulation-based architecture for smart Cyber-Physical Systems. In: 2016 IEEE International Conference on Autonomic Computing (ICAC) (pp. 374–379). https://doi.org/10.1109/icac.2016.29.

  31. Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with AutomationML and a communication methodology for data exchange. In IFAC-PapersOnLine (pp. 12–17). Elsevier B.V. https://doi.org/10.1016/j.ifacol.2016.11.115.

    Article  Google Scholar 

  32. Kraft, E. M. (2016). The US air force digital thread/digital twin—Life cycle integration and use of computational and experimental knowledge II. The evolution of integrated computational/experimental fluid dynamics. In: 54th AIAA Aerospace Sciences Meeting (pp. 1–22). https://doi.org/10.2514/6.2016-0897.

  33. Bajaj, M., Zwemer, D., & Cole, B. (2016). Architecture to geometry—Integrating system models with. In AIAA SPACE Forum (pp. 1–19). https://doi.org/10.2514/6.2016-5470.

  34. Sacco, M., Pedrazzoli, P., & Terkaj, W. (2010). VFF : Virtual Factory Framework. In 2010 IEEE International Technology Management Conference (ICE) (pp. 1–8).

    Google Scholar 

  35. Terkaj, W., & Urgo, M. (2014). Ontology-based modeling of production systems for design and performance evaluation. In 2014 12th IEEE International Conference on Industrial Informatics (INDIN) (pp. 748–753).

    Google Scholar 

  36. Garetti, M., & Fumagalli, L. (2012). Role of ontologies in open automation of manufacturing systems. In Proceedings of XVII Summer School of Industrial Mechanical Plants—12/9/2012–14/9/2012, Venice, Italy.

    Google Scholar 

  37. Negri, E., Fumagalli, L., Macchi, M., & Garetti, M. (2015). Ontology for service-based control of production systems. In APMS 2015, Part II, IFIP AICT 460 (pp. 484–492). http://www.springerlink.com/index/10.1007/978-1-4020-9783-6.

  38. Fumagalli, L., Pala, S., Garetti, M., & Negri, E. (2014). Ontology-based modeling of manufacturing and logistics systems for a new MES architecture. In APMS 2014, IFIP Advances in Information and Communication Technology 438 (PART I) (pp. 192–200).

    Google Scholar 

  39. Cerrone, A., Hochhalter, J., Heber, G., & Ingraffea, A. (2014). On the effects of modeling as-manufactured geometry: Toward digital twin. International Journal of Aerospace Engineering, 2014, 1–10.

    Article  Google Scholar 

  40. Fourgeau, E., Gomez, E., Adli, C. Fernandes, H., & Hagege, M. (2016). System engineering workbench for multi-views systems methodology with 3DEXPERIENCE platform. The aircraft RADAR use case. Complex System Design & Management Asia, 426, 269–270. https://doi.org/10.1007/978.

  41. Yang, J., Zhang, W., & Liu, Y. (2013). Subcycle fatigue crack growth mechanism investigation for aluminum alloys and steel (Special Session on the Digital Twin). In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1499). https://doi.org/10.2514/6.2013-1499.

  42. Grieves, M., & Vickers, J. (2016). Digital twin : Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85–113). https://doi.org/10.1007/978-3-319-38756-7.

    Google Scholar 

  43. Abramovici, M., Gobel, J. C., & Dang, H. B. (2016). Semantic data management for the development and continuous reconfiguration of smart products and systems. CIRP Annals—Manufacturing Technology, 65, 185–188. https://doi.org/10.1016/j.cirp.2016.04.051.

    Article  Google Scholar 

  44. Grinshpun, G., Cichon, T., Dipika, D., & Roßmann, J. (2016). From virtual testbeds to real lightweight robots: Development and deployment of control algorithms for soft robots, with particular reference to industrial peg-in-hole insertion tasks. In Proceedings of ISR 2016: 47st International Symposium on Robotics (pp. 208–214).

    Google Scholar 

  45. Smarslok, B. P., Culler, A. J., & Mahadevan, S. (2012). Error quantification and confidence assessment of aerothermal model predictions for hypersonic aircraft. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (p. 1817). https://doi.org/10.2514/6.2012-1817.

  46. Ríos, J., Morate, F. M., Oliva, M., & Hernández, J. C. (2016). Framework to support the aircraft digital counterpart concept with an industrial design view. International Journal of Agile Systems and Management, 9, 212–231. https://doi.org/10.1504/IJASM.2016.079934.

    Article  Google Scholar 

  47. Arisoy, E. B., Ren, G., Ulu, E., Ulu, N. G., & Musuvathy, S. (2017). A data-driven approach to predict hand positions for two-hand grasps of industrial objects. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V01AR02A067–11 pp). https://doi.org/10.1115/detc2016.

  48. Wang, H.-K., Haynes, R., Huang, H.-Z., Dong, L., & Atluri, S. N. (2015). The use of high-performance fatigue mechanics and the extended Kalman/ particle filters, for diagnostics and prognostics of aircraft structures. CMES: Computer Modeling in Engineering & Sciences, 105, 1–24.

    Google Scholar 

  49. Holzwarth, P., Tuegel, R., & Kobryn, E. (2012). Airframe digital twin: An overview. In Prognosis Health Management Solutions Conference MFPT 2012 (p. 20).

    Google Scholar 

  50. Garetti, M., Rosa, P., & Terzi, S. (2012). Life cycle simulation for the design of product–service systems. Computers in Industry, 63, 361–369. https://doi.org/10.1016/j.compind.2012.02.007.

    Article  Google Scholar 

  51. Garetti, M., Macchi, M., Pozzetti, A., Fumagalli, L., & Negri, E. (2016). Synchro-push: A new production control paradigm. In Summer School Francesco Turco 2016 (pp. 150–155).

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Negri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negri, E., Fumagalli, L., Macchi, M. (2020). A Review of the Roles of Digital Twin in CPS-Based Production Systems. In: Crespo Márquez, A., Macchi, M., Parlikad, A. (eds) Value Based and Intelligent Asset Management. Springer, Cham. https://doi.org/10.1007/978-3-030-20704-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20704-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20703-8

  • Online ISBN: 978-3-030-20704-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics