Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 225))

  • 784 Accesses

Abstract

Although the complete mathematical description of ultra-wideband dispersive pulse propagation can be rather involved, its physical interpretation is really rather straightforward.

When you present a result that is new and unique, your critics first tell you that you must be wrong. When you persist and prove them wrong, they tell you that they knew the result all along. And finally, they tell you that the result is trivial”, as related to me by Emil Wolf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a variation of the following quote attributed to Schopenhauer: “Every problem passes through three stages on the way to acceptance: First, it appears laughable; second, it is fought against; third, it is considered self-evident.”

  2. 2.

    Being involved with both panels in the role of explaining the origin and physical properties of precursor fields, it was surprising to be called upon to defend both electromagnetic and linear system theory at a meeting with the second review panel.

  3. 3.

    The angle brackets 〈∗〉 denote a spatial average of the quantity ∗ over a macroscopically small but microscopically large region of space (see Sect. 4.1.1).

  4. 4.

    The group velocity v g(ω c) at this angular frequency value is, to a very good approximation, equal to the speed of light c (see Fig. 15.9), whereas both the energy velocity v E(ω c) and signal velocity v c(ω c) are both near to their respective minimum values (see Fig. 15.3).

  5. 5.

    The decibel equivalent net heat density is given by \(10\log _{10}\left (\mathcal {W}_{3D}(z)\right )\) with units of dBJ/m3.

  6. 6.

    There isn’t any pole contribution for a gaussian envelope pulse whose dynamical evolution is described completely by the precursor fields.

  7. 7.

    Here a t = 0 because incidence is on the optically denser medium (\(n_2^{\prime }(\omega ) > 1\)) for below resonance carrier frequencies when medium 2 is a single resonance Lorentz model dielectric as considered here. Special care must be taken for frequencies above resonance because \( 0 < n_2^{\prime }(\omega ) < 1\) so that, even though incidence is from vacuum (\(n_1^{\prime } = 1\)), medium 2 appears to be optically rarer.

  8. 8.

    The classic textbook analysis presented in Sect. 9.10 of Stratton [13] erroneously includes this \(e^{ik_2\varDelta z}\) propagation factor. Quite unfortunately, this error has been propagated through the published literature. As stated by Canning [58] “This is not done to single out Stratton. The error that we point out is ubiquitous in the Electromagnetic and Acoustics literature.” Nevertheless, the remainder of the analysis presented in Sect. 9.10 of Stratton is correct with the omission of this factor.

  9. 9.

    Notice that all equations and units of measurement in this section are in the MKSA system of units.

  10. 10.

    By a panel convened by the National Institute of Environmental Health Sciences’ (NIEHS) National Technology Program (NTP) of the US National Institutes of Health (NIH).

References

  1. C. Fowler, J. Entzminger, and J. Corum, “Assessment of ultra-wideband (UWB) technology,” Tech. Rep. DTIC No. ADB146160, Battelle Columbus Labs., Columbus, OH, 1990. Executive summary published in IEEE AESS Magazine, Vol. 5, No. 11, pp. 45–49, November, 1990.

    Google Scholar 

  2. C. A. Fowler, “The UWB (impulse radar) caper or ‘punishment of the innocent’,” Tech. Rep. DTIC No. ADB146160, Battelle Memorial Laboratory, Dayton, OH, 1992. Executive summary published in IEEE AESS Magazine, pp. 3–5, December, 1992.

    Google Scholar 

  3. H. D. Griffiths, C. J. Baker, A. Fernandez, J. B. Davies, and A. L. Cullen, “Use and application of precursor waveforms,” in 1st EMRS DTC Technical Conference, (Edinburgh, UK), 2004.

    Google Scholar 

  4. P. D. Smith, Energy Dissipation of Pulsed Electromagnetic Fields in Causally Dispersive Dielectrics. PhD thesis, University of Vermont, 1995. Reprinted in UVM Research Report CSEE/95/07-02 (July 18, 1995).

    Google Scholar 

  5. P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation of ultrawideband plane wave pulses in a causal, dispersive dielectric,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 285–295, New York: Plenum Press, 1994.

    Chapter  Google Scholar 

  6. P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation and propagation of an ultrawideband plane wave pulse in a causally dispersive dielectric,” Rad. Sci., vol. 33, no. 6, pp. 1489–1504, 1998.

    Article  ADS  Google Scholar 

  7. E. H. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Regularization and fast solution of large subwavelength problems with imperfectly conducting materials,” in 2007 IEEE Antennas & Propagation Soc. International Symposium, vol. 9, pp. 3456–3459, 2007.

    Article  MATH  Google Scholar 

  8. K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.

    Google Scholar 

  9. K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. N. A. Cartwright and K. E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation,” SIAM Review, vol. 49, no. 4, pp. 628–648, 2007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Dawood, H. U. R. Mohammed, and A. V. Alejos, “Method, technique, and system for detecting Brillouin precursors at microwave frequencies for enhanced performance in various applications.” United States Patent No. US 8,570,207 B1, 2013.

    Google Scholar 

  12. J. H. Poynting, “Transfer of energy in the electromagnetic field,” Phil. Trans., vol. 175, pp. 343–361, 1884.

    Article  MATH  Google Scholar 

  13. J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.

    MATH  Google Scholar 

  14. R. S. Elliott, Electromagnetics: History, Theory, and Applications. Piscataway: IEEE Press, 1993.

    Google Scholar 

  15. J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, Inc., third ed., 1999.

    MATH  Google Scholar 

  16. Y. S. Barash and V. L. Ginzburg, “Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium,” Usp. Fiz. Nauk., vol. 118, pp. 523–530, 1976. [English translation: Sov. Phys.-Usp. vol. 19, 163–270 (1976)].

    Google Scholar 

  17. H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1906. Chap. IV.

    Google Scholar 

  18. L. Rosenfeld, Theory of Electrons. Amsterdam: North-Holland, 1951.

    MATH  Google Scholar 

  19. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization: Volume II. Dielectrics in Time-Dependent Fields. Amsterdam: Elsevier, second ed., 1978.

    Chapter  Google Scholar 

  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley-Interscience, 1984. Chap. 9.

    Google Scholar 

  21. B. R. Horowitz and T. Tamir, “Unified theory of total reflection phenomena at a dielectric interface,” Applied Phys., vol. 1, pp. 31–38, 1973.

    Article  ADS  Google Scholar 

  22. C. C. Chen and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,” J. Opt. Soc. Am. A, vol. 4, pp. 655–663, 1987.

    Article  ADS  Google Scholar 

  23. E. Gitterman and M. Gitterman, “Transient processes for incidence of a light signal on a vacuum-medium interface,” Phys. Rev. A, vol. 13, pp. 763–776, 1976.

    Article  ADS  Google Scholar 

  24. J. G. Blaschak and J. Franzen, “Precursor propagation in dispersive media from short-rise-time pulses at oblique incidence,” J. Opt. Soc. Am. A, vol. 12, no. 7, pp. 1501–1512, 1995.

    Article  ADS  Google Scholar 

  25. J. A. Marozas, Angular Spectrum Representation of Ultrawideband Electromagnetic Pulse Propagation in Lossy, Dispersive Dielectric Slab Waveguides. PhD thesis, University of Vermont, 1997. Reprinted in UVM Research Report CSEE/97/11-01 (November 10, 1997).

    Google Scholar 

  26. J. A. Marozas and K. E. Oughstun, “Electromagnetic pulse propagation across a planar interface separating two lossy, dispersive dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 3 (C. Baum, L. Carin, and A. P. Stone, eds.), pp. 217–230, New York: Plenum Press, 1997.

    Chapter  Google Scholar 

  27. N. A. Cartwright, “Electromagnetic plane-wave pulse transmission into a Lorentz half-space,” J. Opt. Soc. Am. A, vol. 28, no. 12, pp. 2647–2654, 2011.

    Article  ADS  Google Scholar 

  28. K. E. Oughstun and C. L. Palombini, “Fresnel reflection and transmission coefficients for temporally dispersive attenuative media,” Radio Science, vol. 53, no. 11, pp. 1382–1397, 2018.

    Article  ADS  Google Scholar 

  29. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik, vol. 6, no. 1, pp. 333–345, 1947.

    Article  ADS  Google Scholar 

  30. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics (T. Tamir, ed.), pp. 13–81, New York: Springer-Verlag, 1979.

    Google Scholar 

  31. D. Marcuse, Theory of Dielectric Optical Waveguides. New York: Academic Press, 1974.

    Google Scholar 

  32. W. Colby, “Signal propagation in dispersive media,” Phys. Rev., vol. 5, pp. 253–265, 1915.

    Article  ADS  Google Scholar 

  33. E. G. Skrotskaya, A. N. Makhlin, V. A. Kashin, and G. V. Skrotskiĭ, “Formation of a forerunner in the passage of the front of a light pulse through a vacuum-medium interface,” Zh. Eksp. Teor. Fiz., vol. 56, no. 1, pp. 220–226, 1969. [English translation: Sov. Phys. JETP vol. 29, 123–125 (1969].

    Google Scholar 

  34. D. G. Dudley, T. M. Papazoglou, and R. C. White, “On the interaction of a transient electromagnetic plane wave and a lossy half-space,” J. Appl. Phys., vol. 45, pp. 1171–1175, 1974.

    Article  ADS  Google Scholar 

  35. T. M. Papazoglou, “Transmission of a transient electromagnetic plane wave into a lossy half-space,” J. Appl. Phys., vol. 46, pp. 3333–3341, 1975.

    Article  ADS  Google Scholar 

  36. E. L. Mokole and S. N. Samaddar, “Transmission and reflection of normally incident pulsed electromagnetic plane waves upon a Lorentz half-space,” J. Opt. Soc. Am. B, vol. 16, pp. 812–831, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  37. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-Hänchen shift,” J. Opt. Soc. Am., vol. 67, no. 1, pp. 103–107, 1977.

    Article  ADS  Google Scholar 

  38. E. H. Renard, “Total reflection: A new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am., vol. 54, no. 10, pp. 1190–1197, 1964.

    Article  ADS  Google Scholar 

  39. H. K. V. Lotsch, “Reflection and refraction of a beam of light at a plane interface,” J. Opt. Soc. Am., vol. 58, no. 4, pp. 551–561, 1968.

    Article  ADS  Google Scholar 

  40. K. W. Chu and J. J. Quinn, “On the Goos-Hänchen effect: A simple example of a time delay scattering process,” Am. J. Phys., vol. 40, no. 12, pp. 1847–1851, 1972.

    Article  ADS  Google Scholar 

  41. J. J. Cowan and B. Aničin, “Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection,” J. Opt. Soc. Am., vol. 67, no. 10, pp. 1307–1314, 1977.

    Article  ADS  Google Scholar 

  42. K. Yasumoto and T. Ōishi, “A new evaluation of the Goos-Hänchen shift and associated time delay,” J. Appl. Phys., vol. 54, no. 5, pp. 2170–2176, 1983.

    Article  ADS  Google Scholar 

  43. S. R. Seshadri, “Goos-Hänchen beam shift at total internal reflection,” J. Opt. Soc. Am. A, vol. 5, no. 4, pp. 583–585, 1988.

    Article  ADS  Google Scholar 

  44. S. Kozaki and H. Sakurai, “Characteristics of a gaussian beam at a dielectric interface,” J. Opt. Soc. Am., vol. 68, no. 4, pp. 508–514, 1978.

    Article  ADS  Google Scholar 

  45. A. Puri and J. L. Birman, “Goos-Hänchen beam shift at total internal reflection with application to spatially dispersive media,” J. Opt. Soc. Am. A, vol. 3, no. 4, pp. 543–549, 1986.

    Article  ADS  Google Scholar 

  46. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-Hänchen effect around and off the critical angle,” J. Opt. Soc. Am. A, vol. 3, no. 4, pp. 550–557, 1986.

    Article  ADS  Google Scholar 

  47. W. Nasalski, T. Tamir, and L. Lin, “Displacement of the intensity peak in narrow beams reflected at a dielectric interface,” J. Opt. Soc. Am. A, vol. 5, no. 1, pp. 132–140, 1988.

    Article  ADS  Google Scholar 

  48. F. I. Baida, D. V. Labeke, and J. M. Vigoureux, “Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications,” J. Opt. Soc. Am. A, vol. 17, no. 5, pp. 858–866, 2000.

    Article  ADS  Google Scholar 

  49. A. Aiello and J. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett., vol. 33, no. 13, pp. 1437–1439, 2008.

    Article  ADS  Google Scholar 

  50. K. Y. Bliokh and A. Aiello, “Goos-Hänchen and Imbert-Fedorov beam shifts: an overview,” J. Opt., vol. 15, no. 014001, 2013.

    Article  ADS  Google Scholar 

  51. M. P. Araújo, S. A. Carvalho, and S. D. Leo, “Maximal breaking of symmetry at critical angles and a closed-form expression for angular deviations of the Snell law,” Phys. Rev. A, vol. 90, no. 033844, 2014.

    Google Scholar 

  52. M. P. Araújo, S. D. Leo, and G. G. Maia, “Closed form expression for the Goos-Hänchen lateral displacement,” Phys. Rev. A, vol. 93, no. 023801, 2016.

    Google Scholar 

  53. M. P. Araújo, S. D. Leo, and G. G. Maia, “The oscillatory behavior of light in the composite Goos-Hänchen shift,” Phys. Rev. A, vol. 95, no. 053836, 2017.

    Google Scholar 

  54. W. J. Wild and C. L. Giles, “Goos-Hänchen shifts from absorbing media,” Phys. Rev. A, vol. 25, no. 4, pp. 2099–2101, 1982.

    Article  ADS  Google Scholar 

  55. T. Tamir, ed., Integrated Optics. New York: Springer-Verlag, 1979.

    Google Scholar 

  56. M. N. Islam, Ultrafast Fiber Switching Devices and Systems. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  57. M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge Univ. Press, seventh (expanded) ed., 1999.

    Google Scholar 

  58. F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in 2011 IEEE Antennas & Propagation Soc. International Symposium, vol. 11, pp. 2123–2126, 2011.

    Article  Google Scholar 

  59. O. S. Heavens, Optical Properties of Thin Solid Films. London: Butterworths Scientific Publications, 1955. Reprinted by Dover Publications (1965).

    Google Scholar 

  60. W. Salisbury, “Absorbent body for electromagnetic waves.” United States Patent No. US 2,599,944, 1952.

    Google Scholar 

  61. B. A. Munk, Metamaterials: Critique and Alternatives. Hoboken: John Wiley & Sons, 2009.

    Book  Google Scholar 

  62. R. Y. Chiao and A. M. Steinberg, “Tunneling times and superluminality,” in Progress in Optics (E. Wolf, ed.), vol. XXXVII, pp. 345–405, Amsterdam: North-Holland, 1997.

    Google Scholar 

  63. W. R. Tinga and S. O. Nelson, “Dielectric properties of materials for microwave processing-tabulated,” J. Microwave Power, vol. 8, pp. 23–65, 1973.

    Article  Google Scholar 

  64. A. V. Alejos, M. Dawood, and J. X. Sun, “Dynamical evolution of Brillouin precursors in multilayered sea-water based media,” in Proc. of the 5th European Conference on Antennas and Propagation, pp. 1357–1361, 2011.

    Google Scholar 

  65. A. V. Alejos, M. Dawood, and H. U. R. Mohammed, “Analysis of Brillouin precursor propagation through foliage for digital sequences of pulses,” IEEE Geoscience and Remote Sensing Lett., vol. 8, no. 1, pp. 59–63, 2011.

    Article  ADS  Google Scholar 

  66. A. V. Alejos and M. Dawood, “Estimation of power extinction factor in presence of Brillouin precursor formation through dispersive media,” J. of Electromagnetic Waves and Appl., vol. 25, no. 4, pp. 455–465, 2011.

    Article  Google Scholar 

  67. A. V. Alejos, M. Dawood, and H. U. R. Mohammed, “Empirical pseudo-optimal waveform design for dispersive propagation through loamy soil,” IEEE Geoscience and Remote Sensing Lett., vol. 9, no. 5, pp. 953–957, 2012.

    Article  ADS  Google Scholar 

  68. C. Pearce, “The permittivity of two phase mixtures,” British J. Appl. Phys., vol. 61, pp. 358–361, 1955.

    Article  ADS  Google Scholar 

  69. A. K. Fung and F. T. Ulaby, “A scatter model of leafy vegetation,” IEEE Trans. Geoscience Electronics, vol. 16, pp. 281–285, 1978.

    Article  ADS  Google Scholar 

  70. A. von Hippel, “Tables of dielectric materials,” Tech. Rep. ONR Contract N5ori-78 T. O. 1, Laboratory for Insulation Research, Mass. Inst. Tech., 1948.

    Google Scholar 

  71. S. Dvorak and D. Dudley, “Propagation of ultra-wide-band electromagnetic pulses through dispersive media,” IEEE Trans. Elec. Comp., vol. 37, no. 2, pp. 192–200, 1995.

    Google Scholar 

  72. S. L. Dvorak, “Exact, closed-form expressions for transient fields in homogeneously filled waveguides,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2164–2170, 1994.

    Article  ADS  Google Scholar 

  73. C. M. Knop, “Pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 12, pp. 494–496, 1964.

    Article  ADS  Google Scholar 

  74. J. R. Wait, “Propagation of pulses in dispersive media,” Radio Sci., vol. 69D, pp. 1387–1401, 1965.

    Google Scholar 

  75. C. T. Case and R. E. Haskell, “On pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 14, pp. 401–, 1966.

    Google Scholar 

  76. M. Wu, R. G. Olsen, and S. W. Plate, “Wideband approximate solutions for the Sommerfeld integrals arising in the wire over earth problem,” J. Electromagnetic Waves Applic., vol. 4, pp. 479–504, 1990.

    Google Scholar 

  77. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, vol. 55 of Applied Mathematics Series. Washington, D.C.: National Bureau of Standards, 1964.

    Google Scholar 

  78. S. L. Dvorak and E. F. Kuester, “Numerical computation of the incomplete Lipschitz-Hankel integral Je 0(a, z),” J. Comput. Phys., vol. 87, pp. 301–327, 1990.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. S. L. Dvorak, “Applications for incomplete Lipschitz-Hankel integrals in electromagnetics,” IEEE Antennas Prop. Magazine, vol. 36, pp. 26–32, 1994.

    Article  ADS  Google Scholar 

  80. C. D. Taylor and D. V. Giri, High-Power Microwave Systems and Effects. Washington, DC: Taylor & Francis, 1994. Ch. 6.

    Google Scholar 

  81. C. Gabriel, “The dielectric properties of biological materials,” in Radiofrequency Radiation Standards (B. J. Klauenberg, D. N. Erwin, and M. Grandolfo, eds.), pp. 187–196, New York: Plenum Press, 1994.

    Chapter  Google Scholar 

  82. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.

    Article  ADS  Google Scholar 

  83. K. E. Oughstun and S. Shen, “Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 5, no. 11, pp. 2395–2398, 1988.

    Article  ADS  Google Scholar 

  84. L. J. Ravitz, “History, measurement, and applicability of periodic changes in the electromagnetic field in health and disease,” Ann. New York Acad. Sci., vol. 98, pp. 1144–1201, 1962.

    Article  ADS  Google Scholar 

  85. T. Kotnik and D. Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields,” Biophysical J., vol. 90, pp. 480–491, 2006.

    Article  ADS  Google Scholar 

  86. Neumann, Sowers, and Jordan, Electroporation and Electrofusion in Cell Biology. New York: Plenum Press, 1989.

    Google Scholar 

  87. N. H. Steneck, “Science and standards: The case of ANSI C95.1 - 1982,” J. Microwave Power, vol. 19, no. 3, pp. 153–158, 1984.

    Article  Google Scholar 

  88. I. D. Bross, “Why proof of safety is much more difficult than proof of hazard,” Biometrics, vol. 41, pp. 785–793, 1985.

    Article  Google Scholar 

  89. R. Albanese, J. Blaschak, R. Medina, and J. Penn, “Ultrashort electromagnetic signals: Biophysical questions, safety issues, and medical opportunities,” Aviation. Space and Environmental Medicine, vol. 65, no. 5, pp. 116–120, 1994.

    Google Scholar 

  90. E. Neumann and A. Katchalsky, “Long-lived conformation changes induced by electric impulses in bipolymers,” in Proc. National Academy Sci. USA, vol. 69, pp. 993–997, 1972.

    Article  ADS  Google Scholar 

  91. C. Chen, R. J. Heinsohn, and L. N. Mulay, “Effect of electrical and magnetic fields on chemical equilibrium,” J. Phys. Soc. Japan, vol. 25, pp. 319–322, 1968.

    Article  ADS  Google Scholar 

  92. T. Y. Tsong, “Electroporation of cell membranes,” Biophys. J., vol. 60, pp. 297–306, 1991.

    Article  ADS  Google Scholar 

  93. D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers, Guide to Electroporation and Electrofusion. New York: Academic Press, 1992.

    Google Scholar 

  94. T. Schunck, F. Bieth, S. Pinguet, and P. Delmote, “Penetration and propagation into biological matter and biological effects of high-power, ultra-wideband pulses: a review.” Electromagnetic Biology and Medicine online, 2014.

    Google Scholar 

  95. J. C. Lin, “Peer review conclusion of clear evidence of cancer risk from cell-phone RF radiation.” Radio Science Bulletin No. 364, 2018.

    Google Scholar 

  96. S. L. Dvorak, R. W. Ziolkowski, and L. B. Felsen, “Hybrid analytical-numerical approach for modeling transient wave propagation in Lorentz media,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1241–1255, 1998.

    Article  ADS  Google Scholar 

  97. H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.

    Article  ADS  Google Scholar 

  98. R. Safian, C. D. Sarris, and M. Mojahedi, “Joint time-frequency and finite-difference time-domain analysis of precursor fields in dispersive media,” Phys. Rev. E, vol. 73, pp. 0666021–0666029, 2006.

    Article  Google Scholar 

  99. A. Karlsson and S. Rikte, “Time-domain theory of forerunners,” J. Opt. Soc. Am. A, vol. 15, no. 2, pp. 487–502, 1998.

    Article  ADS  MathSciNet  Google Scholar 

  100. J. A. Solhaug, J. J. Stamnes, and K. E. Oughstun, “Diffraction of electromagnetic pulses in a single-resonance Lorentz model dielectric,” Pure Appl. Opt., vol. 7, no. 5, pp. 1079–1101, 1998.

    Article  ADS  Google Scholar 

  101. W. Fuscaldo, S. C. Pavone, G. Valerio, A. Galli, M. Albani, and M. Ettorre, “Parameterization of the nondiffractive features of electromagnetic localized pulses,” in Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation, pp. 869–870, 2016.

    Google Scholar 

  102. P. G. Zablocky and N. Engheta, “Transients in chiral media with single-resonance dispersion,” J. Opt. Soc. Am. A, vol. 10, pp. 740–758, 1993.

    Article  ADS  Google Scholar 

  103. K. E. Oughstun, “Transients in chiral media with single resonance dispersion: comments,” J. Opt. Soc. Am. A, vol. 12, no. 3, pp. 626–628, 1995.

    Article  ADS  MathSciNet  Google Scholar 

  104. I. Egorov and S. Rikte, “Forerunners in bigyrotropic materials,” J. Opt. Soc. Am. A, vol. 15, no. 9, pp. 2391–2403, 1998.

    Article  ADS  Google Scholar 

  105. S. Bassiri, C. H. Papas, and N. Enghetta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A, vol. 5, no. 9, pp. 1450–1459, 1988.

    Article  ADS  Google Scholar 

  106. K. Huang and Y. Liao, “Transient power loss density of electromagnetic pulse in Debye media,” IEEE Trans. Microwave Theory and Techniques, vol. 63, no. 1, pp. 135–140, 2015.

    Article  ADS  Google Scholar 

  107. S. Glasgow and M. Ware, “Optimal electromagnetic energy transmission and real-time dissipation in extended media,” Opt. Exp., vol. 22, no. 4, pp. 4453–4465, 2014.

    Article  ADS  Google Scholar 

  108. R. Safian, M. Mojahedi, and C. D. Sarris, “Asymptotic description of wave propagation in an active Lorentzian medium,” Phys. Rev. E, vol. 75, pp. 66611–1–66611–8, 2007.

    Google Scholar 

  109. R. Albanese, J. Penn, and R. Medina, “Ultrashort pulse response in nonlinear dispersive media,” in Ultra-Wideband, Short-Pulse Electromagnetics (H. L. Bertoni, L. B. Felsen, and L. Carin, eds.), pp. 259–265, New York: Plenum Press, 1992.

    Chapter  Google Scholar 

  110. C. L. Palombini and K. E. Oughstun, “Optical precursor fields in nonlinear pulse dynamics,” Optics Express, vol. 18, no. 22, pp. 23104–23120, 2010.

    Article  ADS  Google Scholar 

  111. Y. Chen, X. Feng, and C. Liu, “Generation of nonlinear vortex precursors,” Phys. Rev. Lett., vol. 117, p. 023901, 2016.

    Article  ADS  Google Scholar 

  112. L. J. Wang, B. E. Magill, and L. Mandel, “Propagation of thermal light through a dispersive medium,” J. Opt. Soc. Am. A, vol. 6, no. 5, pp. 964–966, 1989.

    Article  ADS  Google Scholar 

  113. W. Wang and E. Wolf, “Invariance properties of random pulses and of other random fields in dispersive media,” Phys. Rev. E, vol. 52, no. 5, pp. 5532–5539, 1995.

    Article  ADS  Google Scholar 

  114. K. G. Ong, W. R. Dreschel, and C. A. Grimes, “Detection of human respiration using square-wave modulated electromagnetic impulses,” Microwave and Optical Tech. Lett., vol. 36, no. 5, pp. 339–343, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oughstun, K.E. (2019). Applications. In: Electromagnetic and Optical Pulse Propagation . Springer Series in Optical Sciences, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-030-20692-5_8

Download citation

Publish with us

Policies and ethics