Skip to main content

Modeling of TiB2–BN Composites as Cathode Materials for Aluminum Electrolysis Cell

  • Conference paper
  • First Online:
Environmentally-Benign Energy Solutions

Part of the book series: Green Energy and Technology ((GREEN))

  • 1041 Accesses

Abstract

Aluminum is the third most common element and the crust’s most abundant metal. Nowadays, aluminum is an important metal in industrial production. Due to the lightweight, corrosion resistance, low density, and easy working probability, combine with its compatibility for recycling, support its position as the material of option for many utilization and it begins more favored in automotive, spacecraft components, and architectural construction with its extensive utilization area. In this work, the aim was targeted to evaluate the energy consumption in manufacture of the primary aluminum. The life of aluminum electrolysis cell, carbon cathode wear against arc blow, cryolite and abrasion of aluminum film was studied. It was found that TiB2–BN composite was a better option as cathode due to wear resistance, high electrical conductivity and machinability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardal E (2004) Corrosion and protection. Springer-Verlag, London Limited

    Book  Google Scholar 

  2. Kaufman JG (2000) Introduction to aluminium alloys and tempers. ASM International, Ohio

    Google Scholar 

  3. Revie RW (2011) Uhlig’s corrosion handbook, 3rd edn. Willey, New York

    Google Scholar 

  4. Prasad S (2000) Studies on the Hall-Heroult aluminum electrowinning process. J Braz Chem Soc 11:245–251

    Article  Google Scholar 

  5. Welch BJ (1981) Advances in aluminium smelter technology. Chem Eng Aust 5:26–32

    Google Scholar 

  6. Gusberti V et al (2011) Modelling the aluminium smelting cell mass and energy balance—a tool based on the 1st Law of Thermodynamics. In: 10th Australasian aluminium smelting technology conference

    Google Scholar 

  7. Habashi F (1997) Handbook of extractive metallurgy: primary metal, secondary metals, light metals (Cilt 2, 1044). Wiley-VCH Verlag, Weinheim

    Google Scholar 

  8. Munro RG (2000) Material properties of titanium diboride. J Res Nat Inst Stand Technol 105:709–720

    Article  Google Scholar 

  9. Einarsrud MA, Hagen E, Pettersen G, Grande T (1997) Pressureless sintering of titanium diboride with nickel, nickel boride, and iron additives. J Am Ceram Soc 80:3013–3020

    Article  Google Scholar 

  10. Yücel O, Derin CB, Kol Zİ. Ve Alkan M (2008) Magnezyotermik yöntemle TiB2 tozu üretimi, TÜBİTAK MAG Proje 105M339, İstanbul

    Google Scholar 

  11. Matkovich VI (1977) Boron and refractory borides. Springer-Verlag, New York

    Book  Google Scholar 

  12. Jüngling T, Sigl LS, Oberacker R, Thümmler F ve Schwetz KA (1993) New hardmetals based on TiB2. Int J Refract Metals Hard Mater, 12:71–88

    Google Scholar 

  13. Aynibal F (2009) IV grubu metal borürlerin ve lantan hekzaborürün mekanokimyasal reaksiyon ortamında sentezlenmesi, (yüksek lisans tezi). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul

    Google Scholar 

  14. Weimer AW (1997) Carbide, nitride and boride materials synthesis and processing (sf. 90–237). Chapman & Hall, Colorado

    Google Scholar 

  15. Vel L, Demazeau G ve EtourneauJ (1991) Cubic boron nitride: synthesis, physicochemical properties and applications. Mater Sci Eng: B 10:149–164

    Google Scholar 

  16. Haubner R, Wilhelm M, Weissenbacher R ve Lux B (2002) High performance non-oxide ceramics II: Boron nitrides—properties, synthesis and applications (Cilt 102, sf. 1–45). Springer-Verlag, Berlin

    Google Scholar 

  17. Surendranathan AO (2015) An introduction to ceramics and refractories. CRC Press, Taylor & Francis Group

    Google Scholar 

  18. Weirauch DA, Krafick WJ, Ackart G ve Ownby PD (2005) The wettability of titanium diboride by molten aluminum drops. J Mater Sci 40:2301–2306

    Google Scholar 

  19. Bernard S, Miele P (2014) Polymer-derived boron nitride: a review on the Chemistry, shaping and ceramic conversion of borazine derivatives. Materials 7:7436–7459

    Article  Google Scholar 

  20. Bernard S, Miele P (2014) Nanostructured and architectured boron nitride Mater. Today 17:443–450

    Google Scholar 

  21. Vel L, Demazeau G ve Etourneau J (1991) Cubic boron nitride: synthesis, physicochemical properties and applications. Mater Sci Eng: B, 10:149–164

    Google Scholar 

  22. Jansen M (2002) High performance non-oxide ceramics II: hexagonal boron nitride. Springer-Verlag, Berlin, pp 4–38

    Book  Google Scholar 

  23. Lipp A, Schwetz KA ve Hunold K (1989) Hexagonal boron nitride, fabrication properties and applications. J Eur Ceram Soc 5:3–9

    Google Scholar 

  24. Lelonis DA (2003) Boron nitride powder a review. GE Advanced Ceramics Publications (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eda Ergün Songül .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ergün Songül, E., Duman, İ. (2020). Modeling of TiB2–BN Composites as Cathode Materials for Aluminum Electrolysis Cell. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-20637-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20637-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20636-9

  • Online ISBN: 978-3-030-20637-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics