Skip to main content

Biochar Application for Greenhouse Gases Mitigation

  • Conference paper
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Agricultural applications significantly increase the atmospheric emissions of non-CO2 greenhouse gases, nitrogen oxides and methane. Therefore, studies on new strategies to reduce greenhouse gases are become more important. Biochar produced from different organic materials as a by-product of slow pyrolysis and/or rapid pyrolysis, gasification or combustion processes can be used for carbon sequestration, greenhouse gases mitigation, soil improvement, waste management and wastewater treatment. Biochar application is promising technology as a climate change mitigation tool to reduce carbon emissions from soils. The agricultural implementation of biochar may have an important effect on global warming reduction by greenhouse gas emission mitigation and carbon sequestration. Besides, biochar can support the improvement of soil structure and productivity and increase the yields in agriculture. In this study, biochar application and especially the potential for reducing greenhouse gas emissions are reviewed. Further research is necessary to realize the effective mechanisms in biochar application to reduce greenhouse gas emissions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang J, Lü F, Shao L, He P (2014) The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour Technol 168:252–258. https://doi.org/10.1016/j.biortech.2014.02.080

    Article  Google Scholar 

  2. Awasthi MK, Wang Q, Ren X, Zhao J, Huang H, Awasthi SK et al (2016) Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresour Technol 219:270–280. https://doi.org/10.1016/j.biortech.2016.07.128

    Article  Google Scholar 

  3. Awasthi MK, Wang Q, Huang H, Ren X, Lahori AH, Mahar A et al (2016) Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour Technol 216:172–181. https://doi.org/10.1016/j.biortech.2016.05.065

    Article  Google Scholar 

  4. Zapusek U, Lestan D (2009) Fractionation, mobility and bio-accessibility of Cu, Zn, Cd, Pb and Ni in aged artificial soil mixtures. Geoderma 154:164–169. https://doi.org/10.1016/j.geoderma.2009.10.012

    Article  Google Scholar 

  5. Cao Y, Pawłowski A (2013) Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol 127:81–91. https://doi.org/10.1016/j.biortech.2012.09.135

    Article  Google Scholar 

  6. Sánchez-Monedero MA, Serramiá N, Civantos CGO, Fernández-Hernández A, Roig A (2010) Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere 81:18–25. https://doi.org/10.1016/j.chemosphere.2010.07.022

    Article  Google Scholar 

  7. Liu D, Zhang R, Wu H, Xu D, Tang Z, Yu G et al (2011) Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour Technol 102:9040–9049. https://doi.org/10.1016/j.biortech.2011.07.052

    Article  Google Scholar 

  8. Ermolaev E, Sundberg C, Pell M, Jönsson H (2014) Greenhouse gas emissions from home composting in practice. Bioresour Technol 151:174–182. https://doi.org/10.1016/j.biortech.2013.10.049

    Article  Google Scholar 

  9. Szanto GL, Hamelers HVM, Rulkens WH, Veeken AHM (2007) NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour Technol 98:2659–2670. https://doi.org/10.1016/j.biortech.2006.09.021

    Article  Google Scholar 

  10. Li R, Wang JJ, Zhang Z, Shen F, Zhang G, Qin R et al (2012) Nutrient transformations during composting of pig manure with bentonite. Bioresour Technol 121:362–368. https://doi.org/10.1016/j.biortech.2012.06.065

    Article  Google Scholar 

  11. Awasthi MK, Pandey AK, Bundela PS, Wong JWC, Li R, Zhang Z (2015) Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour Technol 213:181–189. https://doi.org/10.1016/j.biortech.2016.02.026

    Article  Google Scholar 

  12. Rulkens W (2008) Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22:9–15. https://doi.org/10.1021/ef700267m

    Article  Google Scholar 

  13. Malińska K, Zabochnicka-Światek M, Dach J (2014) Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol Eng 71:474–478. https://doi.org/10.1016/j.ecoleng.2014.07.012

    Article  Google Scholar 

  14. Jiang T, Ma X, Tang Q, Yang J, Li G, Schuchardt F (2016) Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting. Bioresour Technol 217:210–218. https://doi.org/10.1016/j.biortech.2016.01.089

    Article  Google Scholar 

  15. Dias BO, Silva CA, Higashikawa FS, Roig A, Sánchez-Monedero MA (2010) Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresour Technol 101:1239–1246. https://doi.org/10.1016/j.biortech.2009.09.024

    Article  Google Scholar 

  16. Chowdhury MA, de Neergaard A, Jensen LS (2014) Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 97:16–25. https://doi.org/10.1016/j.chemosphere.2013.10.030

    Article  Google Scholar 

  17. Novak JM, Busscher WJ (2013) Selection and use of designer biochars to improve characteristics of southeastern USA coastal plain degraded soils. Adv Biofuels Bioprod 69–96. https://doi.org/10.1007/978-1-4614-3348-4_7

  18. Brassard P, Godbout S, Palacios JH, Jeanne T, Hogue R, Dubé P et al (2018) Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study. Geoderma 327:73–84. https://doi.org/10.1016/j.geoderma.2018.04.022

    Article  Google Scholar 

  19. Kim Y, Parker W (2008) A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour Technol 99:1409–1416. https://doi.org/10.1016/j.biortech.2007.01.056

    Article  Google Scholar 

  20. Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, Yperman J (2009) Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel 88:1344–1350. https://doi.org/10.1016/j.fuel.2009.02.020

    Article  Google Scholar 

  21. Qambrani NA, Rahman MM, Won S, Shim S, Ra C (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273. https://doi.org/10.1016/j.rser.2017.05.057

    Article  Google Scholar 

  22. Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum), Chemosphere. 78:1167–1171. https://doi.org/10.1016/j.chemosphere.2010.01.009

  23. Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26. https://doi.org/10.1016/j.resconrec.2016.11.016

    Article  Google Scholar 

  24. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  25. Nguyen TTN, Xu CY, Tahmasbian I, Che R, Xu Z, Zhou X et al (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96. https://doi.org/10.1016/j.geoderma.2016.11.004

    Article  Google Scholar 

  26. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  27. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653. https://doi.org/10.1016/j.biortech.2012.03.022

    Article  Google Scholar 

  28. Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manage 181:484–497. https://doi.org/10.1016/j.jenvman.2016.06.063

    Article  Google Scholar 

  29. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC et al (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15. https://doi.org/10.1016/j.jiec.2016.06.002

    Article  Google Scholar 

  30. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 47–82. https://doi.org/10.1016/s0065-2113(10)05002-9

  31. Cornelissen G, Nurida NL, Hale SE, Martinsen V, Silvani L, Mulder J (2018) Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci Total Environ 634:561–568. https://doi.org/10.1016/j.scitotenv.2018.03.380

    Article  Google Scholar 

  32. Liu X, Mao P, Li L, Ma J (2019) Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis. Sci Total Environ 656:969–976. https://doi.org/10.1016/j.scitotenv.2018.11.396

    Article  Google Scholar 

  33. Kou Xu R, Cheng Xiao S, Hua Yuan J, Zhen Zhao A (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298. https://doi.org/10.1016/j.biortech.2011.08.089

  34. Qiu Y, Cheng H, Xu C, Sheng GD (2008) Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res 42:567–574. https://doi.org/10.1016/j.watres.2007.07.051

    Article  Google Scholar 

  35. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J et al (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. https://doi.org/10.1016/j.jcis.2007.01.020

    Article  Google Scholar 

  36. Wang X, Xing B (2007) Sorption of organic contaminants by biopolymer-derived chars. Environ Sci Technol 41:8342–8348. https://doi.org/10.1021/es071290n

    Article  Google Scholar 

  37. Paz-Ferreiro J, Nieto A, Méndez A, Askeland MPJ, Gascó G (2018) Biochar from biosolids pyrolysis: a review. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15050956

  38. Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629. https://doi.org/10.1016/j.biortech.2014.06.103

    Article  Google Scholar 

  39. Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy. 171:581–598. https://doi.org/10.1016/j.energy.2019.01.035

    Article  Google Scholar 

  40. Lehmann J (2009) Biochar for environmental management : an introduction. Biochar Environ Manag Sci Technol 1–12. https://doi.org/10.1016/j.forpol.2009.07.001

  41. Capodaglio AG, Callegari A, Dondi D (2017) Properties and beneficial uses of biochar from sewage sludge pyrolysis. In: 5th International conference on sustainable solid waste management 16

    Google Scholar 

  42. Gascó G, Paz-Ferreiro J, Méndez A (2012) Thermal analysis of soil amended with sewage sludge and biochar from sewage sludge pyrolysis. J Therm Anal Calorim 769–775. https://doi.org/10.1007/s10973-011-2116-2

  43. Yuan H, Lu T, Wang Y, Chen Y, Lei T (2016) Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma 267:17–23. https://doi.org/10.1016/j.geoderma.2015.12.020

    Article  Google Scholar 

  44. Wu Y, Zhang P, Zeng G, Ye J, Zhang H, Fang W et al (2016) Enhancing sewage sludge dewaterability by a skeleton builder: biochar produced from sludge cake conditioned with rice husk flour and FeCl3. ACS Sustain Chem Eng 4:5711–5717. https://doi.org/10.1021/acssuschemeng.6b01654

    Article  Google Scholar 

  45. Kończak M, Oleszczuk P (2018) Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci Total Environ 625:8–15. https://doi.org/10.1016/j.scitotenv.2017.12.118

    Article  Google Scholar 

  46. Penido ES, Martins GC, Mendes TBM, Melo LCA, do Rosário Guimarães I, Guilherme LRG (2019) Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol Environ Saf 172:326–333. https://doi.org/10.1016/j.ecoenv.2019.01.110

  47. Hossain MK, Strezov V, Nelson PF (2015) Comparative assessment of the effect of wastewater sludge biochar on growth. Yield and metal bioaccumulation of cherry tomato. Pedosphere 25:680–685. https://doi.org/10.1016/S1002-0160(15)30048-5

    Article  Google Scholar 

  48. Gonzaga MIS, Mackowiak C, de Almeida AQ, de C. Júnior JIT (2018) Sewage sludge derived biochar and its effect on the growth and morphological traits of eucalyptus grandis W.Hill ex maiden seedlings. Cienc Florest 28:687–695. https://doi.org/10.5902/1980509832067

  49. Zhou D, Liu D, Gao F, Li M, Luo X (2017) Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14070681

  50. Mierzwa-Hersztek M, Gondek K, Klimkowicz-Pawlas A, Baran A, Bajda T (2018) Sewage sludge biochars management—ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environ Toxicol Chem 37:1197–1207. https://doi.org/10.1002/etc.4045

    Article  Google Scholar 

  51. Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qiu R (2013) Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrolysis 102:137–143. https://doi.org/10.1016/j.jaap.2013.03.004

    Article  Google Scholar 

  52. Agrafioti E, Diamadopoulos E (2012) A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete. Agric Water Manag 105:57–64. https://doi.org/10.1016/j.agwat.2012.01.002

    Article  Google Scholar 

  53. Liu T, Liu B, Zhang W (2014) Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment. Polish J Environ Stud 23:271–275

    Google Scholar 

  54. Zielińska A, Oleszczuk P, Charmas B, Skubiszewska-Zięba J, Pasieczna-Patkowska S (2015) Effect of sewage sludge properties on the biochar characteristic. J Anal Appl Pyrolysis 112:201–213. https://doi.org/10.1016/j.jaap.2015.01.025

    Article  Google Scholar 

  55. Novak J, Lima I, Xing B, Gaskin JW, Steiner C, Das KC et al (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206. https://repository.library.northeastern.edu/cgi/viewcontent.cgi?article=1028&context=aes

  56. Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X (2011) Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Sep Sci Technol 46:1950–1956. https://doi.org/10.1080/01496395.2011.584604

    Article  Google Scholar 

  57. Yenisoy-Karakaş S, Aygün A, Güneş M, Tahtasakal E (2004) Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon N Y 42:477–484. https://doi.org/10.1016/j.carbon.2003.11.019

    Article  Google Scholar 

  58. Chen T, Zhou Z, Han R, Meng R, Wang H, Lu W (2015) Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere 134:286–293. https://doi.org/10.1016/j.chemosphere.2015.04.052

    Article  Google Scholar 

  59. Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k

    Article  Google Scholar 

  60. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862. https://doi.org/10.1016/j.watres.2011.11.058

    Article  Google Scholar 

  61. Zhou F, Wang H, Fang S, Zhang W, Qiu R (2015) Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environ Sci Pollut Res 22:16031–16039. https://doi.org/10.1007/s11356-015-4818-7

    Article  Google Scholar 

  62. Kacan E (2016) Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. J Environ Manage 166:116–123. https://doi.org/10.1016/j.jenvman.2015.09.044

    Article  Google Scholar 

  63. Shi L, Zhang G, Wei D, Yan T, Xue X, Shi S et al (2014) Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. J Mol Liq 198:334–340. https://doi.org/10.1016/j.molliq.2014.07.023

    Article  Google Scholar 

  64. Silva TL, Ronix A, Pezoti O, Souza LS, Leandro PKT, Bedin KC et al (2016) Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye Remazol Brilliant Blue R. Chem Eng J 303:467–476. https://doi.org/10.1016/j.cej.2016.06.009

    Article  Google Scholar 

  65. Yao H, Lu J, Wu J, Lu Z, Wilson PC, Shen Y (2013) Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water Air Soil Pollut 224. https://doi.org/10.1007/s11270-012-1370-7

  66. Tang Y, Alam MS, Konhauser KO, Alessi DS, Xu S, Tian WJ et al (2019) Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J Clean Prod 209:927–936. https://doi.org/10.1016/j.jclepro.2018.10.268

    Article  Google Scholar 

  67. Weil NC, Brady RR (2016) The nature and properties of soils, 15th Edition. Soil Sci Soc Am J 80:1428. https://doi.org/10.2136/sssaj2016.0005br

  68. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 516–525. https://doi.org/10.1071/sr10058

  69. Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B et al (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719. https://doi.org/10.2136/sssaj2005.0383

    Article  Google Scholar 

  70. Mukherjee A, Lal R, Zimmerman AR (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36. https://doi.org/10.1016/j.scitotenv.2014.03.141

    Article  Google Scholar 

  71. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Using poultry litter biochars as soil amendments. Aust J Soil Res 46:437–444. https://doi.org/10.1071/SR08036

    Article  Google Scholar 

  72. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488. https://doi.org/10.1016/j.orggeochem.2006.06.022

    Article  Google Scholar 

  73. Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10. https://doi.org/10.1016/j.geoderma.2007.07.013

    Article  Google Scholar 

  74. Berek AK, Hue N, Ahmad A (2011) Beneficial use of biochar to correct soil acidity. Food Provid 3–5

    Google Scholar 

  75. Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (Cu II, Cd II, Ni II, and Pb II) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544. https://doi.org/10.1021/jf9044217

  76. Quayle WC (2010) Biochar potential for soil improvement & soil fertility. Water 49:22–24. https://doi.org/10.2307/2329135

    Article  Google Scholar 

  77. De Gryze S, Cullen M, Durschinger L, Lehmann J, Bluhm D, Six J (2010) Evaluation of the opportunities for generating carbon offsets from soil sequestration of biochar. An Issues Pap Comm Clim Action Reserv Final Version 1–99. https://doi.org/10.1017/cbo9781107415324.004

  78. Duku MH, Gu S, Ben Hagan E, Biochar production potential in Ghana—a review. Renew Sustain Energy Rev 15:3539–3551. https://doi.org/10.1016/j.rser.2011.05.010

  79. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14:777–793. https://doi.org/10.1029/1999GB001208

    Article  Google Scholar 

  80. Lehmann J, Pereira J, Silva D, Steiner C, Nehls T, Zech W et al (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  Google Scholar 

  81. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. https://doi.org/10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  82. Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16. https://doi.org/10.1016/j.agee.2013.10.009

    Article  Google Scholar 

  83. Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35:1584. https://doi.org/10.2134/jeq2005.0232

    Article  Google Scholar 

  84. Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L et al (2012) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. F Crop Res 127:153–160. https://doi.org/10.1016/j.fcr.2011.11.020

    Article  Google Scholar 

  85. Bai M, Wilske B, Buegger F, Bruun EW, Bach M, Frede HG et al (2014) Biodegradation measurements confirm the predictive value of the O: C-ratio for biochar recalcitrance. J Plant Nutr Soil Sci 177:633–637. https://doi.org/10.1002/jpln.201300412

    Article  Google Scholar 

  86. Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052. https://doi.org/10.2134/jeq2011.0132

    Article  Google Scholar 

  87. Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116:653–659. https://doi.org/10.1016/j.jbiosc.2013.05.035

    Article  Google Scholar 

  88. Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88. https://doi.org/10.1016/j.soilbio.2011.11.016

    Article  Google Scholar 

  89. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels, Bioprod. Biorefining 3(5):547–562. https://doi.org/10.1002/bbb.169

  90. Hossain MK, Strezov Vladimir V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92:223–228. https://doi.org/10.1016/j.jenvman.2010.09.008

  91. Kistler RC, Brunner PH, Widmer F (1987) Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ Sci Technol 21:704–708. https://doi.org/10.1021/es00161a012

    Article  Google Scholar 

  92. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813. https://doi.org/10.1098/rstb.2007.2184

    Article  Google Scholar 

  93. Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18. https://doi.org/10.1155/2012/542426

    Article  Google Scholar 

  94. Climate, Climate Change 2014: mitigation of climate change. Summary for Policymakers and Technical Summary, 2014. https://doi.org/10.1017/cbo9781107415416.005

  95. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51:1438–1463. https://doi.org/10.1021/ie200686q

    Article  Google Scholar 

  96. Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM et al (2011) Effects and fate of biochar from rice residues in rice-based systems. F Crop Res 121:430–440. https://doi.org/10.1016/j.fcr.2011.01.014

    Article  Google Scholar 

  97. Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778. https://doi.org/10.1021/es302545b

    Article  Google Scholar 

  98. Wang Z, Zheng H, Luo Y, Deng X, Herbert S, Xing B (2013) Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ Pollut 174:289–296. https://doi.org/10.1016/j.envpol.2012.12.003

    Article  Google Scholar 

  99. UNEP (2016) The Emissions Gap Report 2016. ISBN 978-92-807-3617-5

    Google Scholar 

  100. Smith P (2016) Soil carbon sequestration and biochar as negative emission technologies. Glob Chang Biol 22:1315–1324. https://doi.org/10.1111/gcb.13178

    Article  Google Scholar 

  101. Yang Q, Han F, Chen Y, Yang H, Chen H (2016) Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renew Sustain Energy Rev 53:1580–1590. https://doi.org/10.1016/j.rser.2015.09.049

    Article  Google Scholar 

  102. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1. https://doi.org/10.1038/ncomms1053

  103. Wu F, Jia Z, Wang S, Chang SX, Startsev A (2013) Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol Fertil Soils 49:555–565. https://doi.org/10.1007/s00374-012-0745-7

    Article  Google Scholar 

  104. Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X et al (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475. https://doi.org/10.1016/j.agee.2010.09.003

    Article  Google Scholar 

  105. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  106. Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266

    Article  Google Scholar 

  107. Bracmort K (2010) Biochar: examination of an emerging concept to mitigate climate change. Congr Res Serv 11

    Google Scholar 

  108. Rondon M, Ramirez JA (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: 3rd USDA symposium greenhouse gases carbon sequestration in agriculture and forestry 208

    Google Scholar 

  109. Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments: original article. Soil Sci Plant Nutr 53:181–188. https://doi.org/10.1111/j.1747-0765.2007.00123.x

    Article  Google Scholar 

  110. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. https://doi.org/10.1023/a:1006244819642

  111. Luo Y, Zhou X (2006) Soil respiration and the environment. https://doi.org/10.1016/b978-0-12-088782-8.x5000-1

  112. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90. https://doi.org/10.1023/A:1006112000616

    Article  Google Scholar 

  113. Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379. https://doi.org/10.1111/j.1365-2486.2009.02044.x

    Article  Google Scholar 

  114. Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219. https://doi.org/10.1016/j.soilbio.2008.10.016

    Article  Google Scholar 

  115. Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165. https://doi.org/10.1016/S0038-0717(00)00125-5

    Article  Google Scholar 

  116. Richardson J, Chatterjee A, Darrel Jenerette G (2012) Optimum temperatures for soil respiration along a semi-arid elevation gradient in southern California. Soil Biol Biochem 46:89–95. https://doi.org/10.1016/j.soilbio.2011.11.008

  117. Genesio L, Miglietta F, Lugato E, Baronti S, Pieri M, Vaccari FP (2012) Surface albedo following biochar application in durum wheat. Environ Res Lett 7. https://doi.org/10.1088/1748-9326/7/1/014025

  118. Meyer S, Bright RM, Fischer D, Schulz H, Glaser B (2012) Albedo impact on the suitability of biochar systems to mitigate global warming. Environ Sci Technol 46:12726–12734. https://doi.org/10.1021/es302302g

    Article  Google Scholar 

  119. Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313. https://doi.org/10.1016/j.agee.2010.12.005

    Article  Google Scholar 

  120. Reicosky DC (1997) Tillage-induced CO2 emission from soil Tillage-induced CO2 emission from soil. Nutr Cycl Agroecosystems 49:273–285. https://doi.org/10.1023/A:1009766510274

  121. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

  122. Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320 (80):629. https://doi.org/10.1126/science.1154960

  123. Spokas KA (2012) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5:165–176. https://doi.org/10.1111/gcbb.12005

  124. Jin H (1989) Thesis: Characterization of Microbial Life Colonizing Biochar and Biochar-Amended Soils. J Chem Inf Model 53:160. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  125. Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301. https://doi.org/10.1016/j.soilbio.2010.10.014

    Article  Google Scholar 

  126. IPCC (2007) Summary for policymakers. In: Solomon S et al (eds) Climate change 2007: the physical sciences basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC. https://books.google.com.co/books?id=8-m8nXB8GB4C

  127. Van Zwieten L, Kammen C, Cayuela ML, Singh BP, Joseph S, Kimber S et al (2015) Biochar effects on nitrous oxide and methane emissions from soil. Biochar Environ Manag Sci Technol Implement 976. https://books.google.com/books?id=gWDABgAAQBAJ&pgis=1

  128. Scheer C, Grace PR, Rowlings DW, Kimber S, van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales Australia. Plant Soil. 345:47–58. https://doi.org/10.1007/s11104-011-0759-1

    Article  Google Scholar 

  129. Sánchez-García M, Sánchez-Monedero MA, Roig A, López-Cano I, Moreno B, Benitez E et al (2016) Compost versus biochar amendment: a two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop Plant Soil 408. https://doi.org/10.1007/s11104-016-2794-4

  130. Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on greenhouse gas production. Ann Environ Sci 3:179–193

    Google Scholar 

  131. Clough TJ, Bertram JE, Ray JL, Condron LM, O’Callaghan M, Sherlock RR et al (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74:852. https://doi.org/10.2136/sssaj2009.0185

    Article  Google Scholar 

  132. Saarnio S, Heimonen K, Kettunen R (2013) Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol Biochem 58:99–106. https://doi.org/10.1016/j.soilbio.2012.10.035

    Article  Google Scholar 

  133. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327. https://doi.org/10.1016/j.cosust.2011.08.011

    Article  Google Scholar 

  134. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese S, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B Biol Sci 368. https://doi.org/10.1098/rstb.2013.0122

  135. Bruun EW, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62:581–589. https://doi.org/10.1111/j.1365-2389.2011.01377.x

    Article  Google Scholar 

  136. Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Article in press G Model Greenhouse gas emissions from soils—A review. Chem Erde. https://doi.org/10.1016/j.chemer.2016.04.002

    Article  Google Scholar 

  137. Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T et al (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J 8:660–674. https://doi.org/10.1038/ismej.2013.160

    Article  Google Scholar 

  138. He L, Zhao X, Wang S, Xing G (2016) The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil Tillage Res 164:52–62. https://doi.org/10.1016/j.still.2016.05.006

    Article  Google Scholar 

  139. Augustenborg CA, Hepp S, Kammann C, Hagan D, Schmidt O, Müller C (2012) Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual 41:1203. https://doi.org/10.2134/jeq2011.0119

    Article  Google Scholar 

  140. Bamminger C, Marschner B, Jüschke E (2014) An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. Eur J Soil Sci 65:72–82. https://doi.org/10.1111/ejss.12074

    Article  Google Scholar 

  141. Liu L, Shen G, Sun M, Cao X, Shang G, Chen P (2014) Effect of biochar on nitrous oxide emission and its potential mechanisms. J Air Waste Manag Assoc 64:894–902. https://doi.org/10.1080/10962247.2014.899937

    Article  Google Scholar 

  142. Sun L, Li L, Chen Z, Wang J, Xiong Z (2014) Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci Plant Nutr 60:254–265. https://doi.org/10.1080/00380768.2014.885386

    Article  Google Scholar 

  143. Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:403–427. https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  144. Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T (2004) Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour Technol 95:255–257. https://doi.org/10.1016/j.biortech.2004.02.015

    Article  Google Scholar 

  145. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents in aqueous solutions. Chem Phys Carbon 227–405

    Google Scholar 

  146. Felber R, Leifeld J, Horák J, Neftel A (2014) Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. Eur J Soil Sci 65:128–138. https://doi.org/10.1111/ejss.12093

    Article  Google Scholar 

  147. Sarkhot DV, Berhe AA, Ghezzehei TA (2012) Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. J Environ Qual 41:1107. https://doi.org/10.2134/jeq2011.0123

    Article  Google Scholar 

  148. Angst TE, Patterson CJ, Reay DS, Anderson P, Peshkur TA, Sohi SP (2013) Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. J Environ Qual 42:672. https://doi.org/10.2134/jeq2012.0341

    Article  Google Scholar 

  149. Rogovska N, Laird D, Cruse R, Fleming P, Parkin T, Meek D (2011) Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci Soc Am J 75:871. https://doi.org/10.2136/sssaj2010.0270

    Article  Google Scholar 

  150. Chen X, Jeyaseelan S, Graham N (2002) Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Manag 22:755–760. https://doi.org/10.1016/S0956-053X(02)00057-0

    Article  Google Scholar 

  151. Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci Rep 3. https://doi.org/10.1038/srep01732

  152. Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146. https://doi.org/10.1016/j.soilbio.2013.03.013

    Article  Google Scholar 

  153. Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255. https://doi.org/10.1016/j.soilbio.2013.12.026

    Article  Google Scholar 

  154. Sánchez-García MA, Roig M, Sanchez-Monedero A, Cayuela ML (2014) Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Front Environ Sci 2. https://doi.org/10.3389/fenvs.2014.00025

  155. Kammann C, Funke A (2017) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

  156. Renner R (2007) Rethinking biochar. Environ Sci Technol 41:5932–5933. https://doi.org/10.1021/es0726097

    Article  Google Scholar 

  157. Jia J, Li B, Chen Z, Xie Z, Xiong Z (2012) Effects of biochar application on vegetable production and emissions of N2O and ch4. Soil Sci. Plant Nutr. 58:503–509. https://doi.org/10.1080/00380768.2012.686436

    Article  Google Scholar 

  158. Hanley K, Enders A, Cayuela ML, Sa MA, Lehmann J, Sánchez-Monedero MA et al (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N(2)O emissions? Sci Rep 3:1–7. https://doi.org/10.1038/srep01732

    Article  Google Scholar 

  159. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181:121–126. https://doi.org/10.1016/j.jhazmat.2010.04.103

    Article  Google Scholar 

  160. Oya A, Iu WG (2002) Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon N Y 40:1391–1399. https://doi.org/10.1016/S0008-6223(01)00273-1

    Article  Google Scholar 

  161. Tsutomu I, Takashi A, Kuniaki K, Kikuo O (2004) Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon. J Heal Sci 50:148–153. https://doi.org/10.1248/jhs.50.148

    Article  Google Scholar 

  162. Brevik EC (2012) Soils and climate change: gas fluxes and soil processes. Soil Horizons 53:12. https://doi.org/10.2136/sh12-04-0012

    Article  Google Scholar 

  163. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K et al (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196:7–14. https://doi.org/10.1023/A:1004263405020

    Article  Google Scholar 

  164. Xiong Z-Q, Xing G-X, Zhu Z-L (2007) Nitrous oxide and methane emissions as affected by water. Soil Nitrogen Pedosphere 17:146–155. https://doi.org/10.1016/s1002-0160(07)60020-4

    Article  Google Scholar 

  165. Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76. https://doi.org/10.1007/s11104-007-9446-7

    Article  Google Scholar 

  166. Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109. https://doi.org/10.1016/S0146-6380(02)00062-1

    Article  Google Scholar 

  167. Jha P, Biswas AK, Lakaria BL, Subba Rao A (2010) Biochar in agriculture—prospects and related implications. Curr Sci 99:1218–1225

    Google Scholar 

  168. Tate KR, Ross DJ, Scott NA, Rodda NJ, Townsend JA, Arnold GC (2006) Post-harvest patterns of carbon dioxide production, methane uptake and nitrous oxide production in a Pinus radiata D. Don plantation. For Ecol Manage 228:40–50. https://doi.org/10.1016/j.foreco.2006.02.023

  169. Jacinthe PA, Lal R (2006) Methane oxidation potential of reclaimed grassland soils as affected by management. Soil Sci 171:772–783. https://doi.org/10.1097/01.ss.0000209357.53536.43

    Article  Google Scholar 

  170. Qian L, Chen L, Joseph S, Pan G, Li L, Zheng J et al (2014) Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Manag. 5:145–154. https://doi.org/10.1080/17583004.2014.912866

    Article  Google Scholar 

  171. Creamer AE, Gao B, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem Eng J 249:174–179. https://doi.org/10.1016/j.cej.2014.03.105

    Article  Google Scholar 

  172. Huang YF, Te Chiueh P, Shih CH, Lo SL, Sun L, Zhong Y et al (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy. 84:75–82. https://doi.org/10.1016/j.energy.2015.02.026

    Article  Google Scholar 

  173. Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224. https://doi.org/10.2134/jeq2009.0138

    Article  Google Scholar 

  174. Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939. https://doi.org/10.1007/s11368-011-0376-x

    Article  Google Scholar 

  175. Zhen M, Song B, Liu X, Chandankere R, Tang J (2018) Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils. Chinese J Chem Eng 26:2592–2600. https://doi.org/10.1016/j.cjche.2018.01.028

    Article  Google Scholar 

  176. Lu X, Li Y, Wang H, Singh BP, Hu S, Luo Y et al (2019) Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agric For Meteorol 271:168–179. https://doi.org/10.1016/j.agrformet.2019.03.001

    Article  Google Scholar 

  177. Thers H, Djomo S, Elsgaard L, Knudsen MT (2019) Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel. Elsevier. 671:180–188. https://doi.org/10.1016/j.scitotenv.2019.03.257

  178. Fidel R, Laird D, Parkin T (2019) Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst 3:8. https://doi.org/10.3390/soilsystems3010008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Demir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demir, Ö. (2020). Biochar Application for Greenhouse Gases Mitigation. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-20637-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20637-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20636-9

  • Online ISBN: 978-3-030-20637-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics