Skip to main content

Perturbation Methods in Celestial Mechanics

  • Chapter
  • First Online:
Satellite Dynamics and Space Missions

Part of the book series: Springer INdAM Series ((SINDAMS,volume 34))

  • 891 Accesses

Abstract

A concise, not too technical account of the main results of perturbation theory is presented, paying particular attention to the mathematical development of the last 60 years, with the work of Kolmogorov on one hand and of Nekhoroshev on the other hand. The main theorems are recalled with the aim of providing some insight on the guiding ideas, but omitting most details of the proofs that can be found in the existing literature.

The real trouble with this world of ours is not that it is an unreasonable world, nor even that it is a reasonable one. The commonest kind of trouble is that it is nearly reasonable, but not quite. Life is not an illogicality; yet it is a trap for logicians. It looks just a little more mathematical and regular than it is; its exactitude is obvious, but its inexactitude is hidden; its wildness lies in wait. (G. K. Chesterton)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andoyer, H.: Cours De mécanique Céleste. Atlantis Press, Paris (1923)

    MATH  Google Scholar 

  2. Arnold, V.I.: Proof of a theorem of A.N. Kolmogorov on the invariance of quasi–periodic motions under small perturbations of the Hamiltonian. Usp. Mat. Nauk. 18, 13 (1963); Russ. Math. Surv. 18, 9 (1963)

    Google Scholar 

  3. Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Math. Nauk. 18(6), 91 (1963); Russ. Math. Surv. 18(6), 85 (1963)

    Google Scholar 

  4. Arnold, V.I.: A theorem of Liouville concerning integrable problems of dynamics. Sibirsk. Math. Zh. 4, 471–474 (1963)

    MathSciNet  Google Scholar 

  5. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method. Il Nuovo Cimento 79(B), 201–223 (1984)

    Article  MathSciNet  Google Scholar 

  6. Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, New York (1927)

    MATH  Google Scholar 

  7. Celletti, A., Chierchia, L.: On the stability of realistic three body problems. Commun. Math. Phys. 186, 413–449 (1997)

    Article  MathSciNet  Google Scholar 

  8. Celletti, A., Falcolini, C.: Construction of invariant tori for the spin-orbit problem in the Mercury-Sun system. Celest. Mech. Dyn. Astron. 53, 113–127 (1992)

    Article  MathSciNet  Google Scholar 

  9. Celletti, A., Giorgilli, A.: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest. Mech. Dyn. Astron. 50, 31–58 (1991)

    Article  MathSciNet  Google Scholar 

  10. Chirikov, B.V.: A universal instability of many dimensional oscillator system. Phys. Rep. 52, 263–379 (1979)

    Article  MathSciNet  Google Scholar 

  11. Contopoulos, G.: A third integral of motion in a Galaxy. Z. Astrophys. 49, 273–291 (1960)

    MathSciNet  MATH  Google Scholar 

  12. Contopoulos, G.: In: Nahon, F., Hénon, M. (eds.) Les nouvelles Méthodes de la Dynamique Stellaire. CNRS, Paris (1966); see also Bull. Astron. Ser. 3, 2, Fasc. 1, 233 (1967)

    Google Scholar 

  13. Contopoulos, G., Efthymiopoulos, C., Giorgilli, A.: Non-convergence of formal integrals of motion. J. Phys. A Math. Gen. 36, 8639–8660 (2003)

    Article  MathSciNet  Google Scholar 

  14. Delaunay, C.: Théorie du mouvement de la lune. Memoir 28 Academy of Sciences France, Paris (1860)

    Google Scholar 

  15. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)

    Article  MathSciNet  Google Scholar 

  16. de Laplace, P.-S.: Mémoire sur le principe de la gravitation universelle et sur les inégalités séculaires des planètes qui en dependent. Mémoires de l’Académie Royale des Sciences de Paris (1773). Reprinted in Oeuvres complètes de Laplace. Gauthier–Villars, Paris (1891), tome VIII, pp. 201–275

    Google Scholar 

  17. de Laplace, P–S.: Théorie de Jupiter et Saturne. Mémoires de l’Académie Royale des Sciences de Paris, année 1785, (1788). Reprinted in Oeuvres complètes de Laplace. Gauthier–Villars, Paris (1891), tome XI, p. 95

    Google Scholar 

  18. Efthymiopoulos, C., Sándor, Z.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. Mon. Not. R. Astron. Soc. 364(1), 253–271 (2005)

    Article  Google Scholar 

  19. Efthymiopoulos, C., Contopoulos, G., Giorgilli, A.: Non-convergence of formal integrals of motion II: improved estimates for the optimal order of truncation. J. Phys. A Math. Gen. 37, 10831–10858 (2004)

    Article  Google Scholar 

  20. Giorgilli, A.: Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point. Ann. de l’I.H.P. Prog. Theor. Phys. 48, 423–439 (1988)

    Google Scholar 

  21. Giorgilli, A.: Notes on exponential stability of Hamiltonian systems. In: Dynamical Systems, Part I: Hamiltonian Systems and Celestial Mechanics, 87–198. Pubblicazioni del Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003)

    Google Scholar 

  22. Giorgilli, A.: A Kepler’s note on secular inequalities. Rendiconti dell’Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 145, 97–119 (2011)

    Google Scholar 

  23. Giorgilli, A., Marmi, S.: Convergence radius in the Poincaré-Siegel problem. DCDS Ser. S 3, 601–621 (2010)

    Article  Google Scholar 

  24. Giorgilli, A., Morbidelli, A.: Invariant KAM tori and global stability for Hamiltonian systems. ZAMP 48, 102–134 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Giorgilli, A., Skokos, C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)

    Google Scholar 

  26. Giorgilli, A., Zehnder, E.: Exponential stability for time dependent potentials. ZAMP 5, 827–855 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., Simó, C.: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equ. 20, (1989)

    Google Scholar 

  28. Giorgilli, A., Locatelli, U., Sansottera, M.: Kolmogorov and Nekhoroshev theory for the problem of three bodies. Celest. Mech. Dyn. Astron. 104, 159–175 (2009)

    Article  MathSciNet  Google Scholar 

  29. Giorgilli, A., Locatelli, U., Sansottera, M.: Secular dynamics of a planar model of the Sun–Jupiter–Saturn–Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories. Regul. Chaotic Dyn. 22 54–77 (2017)

    Article  MathSciNet  Google Scholar 

  30. Gröbner, W.: Die Lie–Reihen und Ihre Anwendungen. VEB Deutscher Verlag der Wissenschaften, Berlin (1967)

    MATH  Google Scholar 

  31. Gyldén, H.: Untersuchungen über die convergenz der reigen, welche zur darstellung der coordinaten der planeten angewendet werden. Acta 9, 185–294 (1887)

    Article  MathSciNet  Google Scholar 

  32. Haretu, S.C.: Thèses Presentès a la Faculté des Sciences de Paris. Gauthier-Villars, Paris (1878)

    MATH  Google Scholar 

  33. Haretu, S.C.: Sur l’invariabilité des grands axes des orbites planétaires. Ann. Obs. Paris Mém. 18, 1–39 (1885)

    MATH  Google Scholar 

  34. Hori, G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18, 287–296 (1966)

    Google Scholar 

  35. Jost, R.: Winkel–und Wirkungsvariable für allgemeine mechanische Systeme. Helv. Phys. Acta 41, 965–968 (1968)

    Google Scholar 

  36. Kepler, J.: Consideratio observationum Regiomontani et Waltheri, published in: Johannis Kepleri astronomi opera omnia, MDCCCLX, Vol. VI, pp. 725–774

    Google Scholar 

  37. Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the Hamilton function. Dokl. Akad. Nauk SSSR 98, 527 (1954). English translation in: Los Alamos Scientific Laboratory translation LA-TR-71-67; reprinted in Lecture Notes in Physics 93

    Google Scholar 

  38. Lagrange, J.L.: Recherche sur les équations séculaires des mouvements des noeuds et des inclinaisons des orbites des planètes. Mémoires de l’Académie Royale des Sciences de Paris (1774). Reprinted in Oeuvres de Lagrange, Gauthier–Villars, Paris (1870), tome VI, pp. 635–709

    Google Scholar 

  39. Lagrange, J.L.: Sur l’altération des moyens mouvements des planètes. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin (1776). Reprinted in Oeuvres de Lagrange. Gauthier–Villars, Paris (1867), tome IV, pp. 255–271

    Google Scholar 

  40. Lagrange, J.L.: Théorie des variations séculaires des éléments des planètes. Première partie contenant les principes et les formules générales pour déterminer ces variations. Nouveaux mémoires de l’Académie des Sciences et Belles–Lettres de Berlin (1781). Reprinted in Oeuvres de Lagrange, Gauthier–Villars, Paris (1870), tome V, pp.125–207

    Google Scholar 

  41. Lagrange, J.L.: Théorie des variations séculaires des éléments des planètes. Seconde partie contenant la détermination de ces variations pour chacune des planètes pricipales. Nouveaux mémoires de l’Académie des Sciences et Belles–Lettres de Berlin (1782). Reprinted in Oeuvres de Lagrange, Gauthier–Villars, Paris (1870), tome V, pp.211–489

    Google Scholar 

  42. Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88, 266 (1990)

    Article  Google Scholar 

  43. Laskar, J.: Large scale chaos in the solar system. Astron. Astrophys. 287 (1994)

    Google Scholar 

  44. Laskar, J.: Lagrange et la Stabilité du Sytème Solaire. In: Sacchi Landriani, G., Giorgilli, A. (eds.) Sfogliando la Méchanique Analitique. LED edizioni, Milano (2008)

    Google Scholar 

  45. Lindstedt, A.: Beitrag zur integration der differentialgleichungen der differentialgleichungen der störungstheorie. Mém. Acad. Imp. des sciences St. Pétersbourg. XXXI, 4 (1883)

    Google Scholar 

  46. Liouville, M.J.: Sur l’intgrations des quations diffrentielles de la dynamique. J. de Mathmatiques pures et appliques tome XX, 137–138 (1855)

    Google Scholar 

  47. Littlewood, J.E.: On the equilateral configuration in the restricted problem of three bodies. Proc. Lond. Math. Soc. 9(3), 343–372 (1959)

    Article  MathSciNet  Google Scholar 

  48. Littlewood, J.E.: The Lagrange configuration in celestial mechanics. Proc. Lond. Math. Soc. 9(3), 525–543 (1959)

    Article  MathSciNet  Google Scholar 

  49. Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems. Celest. Mech. Dyn. Astron. 78, 47–74 (2000)

    Article  MathSciNet  Google Scholar 

  50. Locatelli, U., Giorgilli, A.: Invariant tori in the Sun–Jupiter–Saturn system. DCDS-B 7, 377–398 (2007)

    Article  MathSciNet  Google Scholar 

  51. Lyapunov, A.M.: The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, University of Kharkov, Kharkov (1892). French translation in: Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse, deuxième série, Tome IX, 203–474 (1907). Reprinted in Ann. Math. Study, Princeton University Press, n. 17, (1949)

    Google Scholar 

  52. Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori. J. Stat. Phys. 78, 1607–1617 (1995)

    Article  MathSciNet  Google Scholar 

  53. Moser, J.: Stabilitätsverhalten kanonisher differentialgleichungssysteme. Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 IIa. 6, 87–120 (1955)

    Google Scholar 

  54. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött., II Math. Phys. Kl. 1962, 1–20 (1962)

    Google Scholar 

  55. Nekhoroshev, N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surv. 32, 1 (1977)

    Article  Google Scholar 

  56. Nekhoroshev, N.N.: Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs. 5, 5 (1979)

    Google Scholar 

  57. Newton, I.: Opticks: or, A Treatise of the Reflections. Refractions, Inflections and Coulors of Light, London (1704)

    Google Scholar 

  58. Poincaré, H.: Les méthodes Nouvelles de la Mécanique Céleste. Gauthier–Villars, Paris (1892)

    MATH  Google Scholar 

  59. Poincaré, H.: Le“ccedillaons de Mécanique Céleste. Professées a la Sorbonne, Tome I, Théorie générale des Perturbations Planetaires. Gautier–Villars, Paris (1905)

    Google Scholar 

  60. Poisson, S.: Mémoire sur la Variation des Constantes Arbitraires Dans les Questions de Mécanique. J. de l’École Polythecnique quinzième cahier, tome VIII (1809)

    Google Scholar 

  61. Sansottera, M., Locatelli, U., Giorgilli, A.: On the stability of the secular evolution of the planar Sun–Jupiter–Saturn–Uranus system. Math. Comput. Simul. 88, 1–14 (2013)

    Article  MathSciNet  Google Scholar 

  62. Servizi, G., Turchetti, G., Benettin, G., Giorgilli, A.: Resonances and asymptotic behaviour of Birkhoff series. Phys. Lett. A 95, 11–14 (1983)

    Article  MathSciNet  Google Scholar 

  63. Siegel, C.L.: On the integrals of canonical systems. Ann. Math. 42, 806–822 (1941)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First of all, I should express my gratitude to the organizers of the School “SDSM 2017” in S. Martino al Cimino. They made a major effort in making the school interesting and fruitful, and so it was, indeed. I thank them for their kind invitation, and I should also thank all the participants for their remarkable patience in enduring my lectures. Last but not least, Marco Sansottera and Giovanni Gronchi made an accurate reading of the manuscript. I greatly appreciated their help and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Giorgilli .

Editor information

Editors and Affiliations

Appendix: A Short Overview on Lie Series Methods

Appendix: A Short Overview on Lie Series Methods

Here I recall a few notions concerning Lie series and Lie transforms that are used in the text. Throughout the appendix all functions will be assumed to be holomorphic.

1.1 8 Lie Series

For a given generating function χ(p, q) the Lie series operator is defined as the exponential of the Lie derivative L χ⋅ = {⋅, χ}, namely

$$\displaystyle \begin{aligned} \exp(\epsilon L_{\chi}) = \sum_{s\ge 0} {{\epsilon^s}\over{s!}}L_{\chi}^s\ . {} \end{aligned} $$
(18)

This is actually the autonomous flow of the canonical vector field generated by χ(p, q). The flow at time ε is used in order to produce a one-parameter family of canonical transformations that is written as

$$\displaystyle \begin{aligned} p &=\exp(\epsilon L_{\chi}) p^{\prime} =p^{\prime}-\epsilon \left.{{\partial\chi}\over{\partial q}}\right|{}_{p^{\prime},q^{\prime}} + {{\epsilon^2}\over{2}} L_{\chi} \left.{{\partial\chi}\over{\partial q}}\right|{}_{p^{\prime},q^{\prime}} -\ldots \\ q &=\exp(\epsilon L_{\chi}) q^{\prime} =q^{\prime}+\epsilon \left.{{\partial\chi}\over{\partial p}}\right|{}_{p^{\prime},q^{\prime}} + {{\epsilon^2}\over{2}} L_{\chi} \left.{{\partial\chi}\over{\partial p}}\right|{}_{p^{\prime},q^{\prime}} +\ldots\ ; \end{aligned} $$

As an operator acting on holomorphic functions the exponential operator is linear and invertible, and has the remarkable properties of distributing over the products and the Poisson brackets of functions, i.e., \(\exp (L_{\chi })(f\cdot g) =\big (\exp (L_{\chi })f\big )\cdot \big (\exp (L_{\chi })g\big )\) and \(\exp (L_{\chi })\lbrace f,g\rbrace =\lbrace \exp (L_{\chi })f,\exp (L_{\chi })g\rbrace \). The inverse of \(\exp \big (\epsilon L_{\chi }\big )\) is \(\exp \big (\epsilon L_{-\chi }\big )\), for the flow is autonomous.

The most useful property of the exponential operator has been named exchange theorem by Gröbner [30]. It is stated (in a somehow puzzling form) as

$$\displaystyle \begin{aligned} f(p,q)\Big\vert_{p=\exp(\epsilon L_{\chi}) p^{\prime},q=\exp(\epsilon L_{\chi}) q^{\prime}} = \exp(\epsilon L_{\chi}) f\Big\vert_{p^{\prime},q^{\prime}}\ . \end{aligned}$$

The meaning is that an operation of substitution of a near the identity transformation followed by an expansion on the parameter (left side) is replaced by a direct application of the exponential operator to the function (right side): substitutions are avoided.

The application of the operator to a function f(p, q) = f 0(p, q) + εf 1(p, q) + ε 2 f 2(p, q) + … expanded in power series of the parameter ε is nicely represented by the triangular diagram for Lie series of Table 4. Terms of the same order in ε are aligned on the same row. Remark that the triangle is generated by columns: every column may be calculated separately once the upper term is known. If the function f is known, then the coefficients of the ε expansion of the transformed function \(g=\exp (L_{\chi })f\) are calculated by adding up all terms on the same line. The result may be expressed by the formula

$$\displaystyle \begin{aligned} g_0 = f_0\ ,\quad g_s = \sum_{j=0}^{s} {{1}\over{j!}} L_{\chi_1}^j f_{s-j}\ ,\quad s \ge 1\ .\end{aligned} $$

A generating function χ 2 of order ε 2 generates a similar triangle, which, however, will contain many empty cells, as represented in Table 5.

Table 4 The triangular diagram for Lie series
Table 5 The triangular diagram for a generating function of order ε 2

A general formula for the transformation of a function with a generating function of order ε r is

$$\displaystyle \begin{aligned} g_0 &= f_0\ ,\ldots,\ g_{r-1} = f_{r-1}\ , \\ g_s &=\sum_{j=0}^k {{1}\over{j!}} L_{\chi_r}^j f_{s-jr}\ ,\quad k=\left\lfloor{{s}\over{r}}\right\rfloor\ ,\quad s \ge r \end{aligned} $$

Remark that the first change occurs at order r + 1.

Lie series operators of increasing order may be formally composed as follows. Let χ = {χ 1(p, q), χ 2(p, q), …} be a sequence of generating functions of increasing orders ε, ε 2, … ; the composition is formally defined as

$$\displaystyle \begin{aligned} S_{\chi} = \ldots\circ\exp\big(L_{\chi_3}\big) \circ\exp\big(L_{\chi_2}\big) \circ\exp\big(L_{\chi_1}\big) \end{aligned}$$

We may also use the recursive definition of a sequence of operator S 1, S 2, S 3, …

$$\displaystyle \begin{aligned} S_1 = \exp\big(L_{\chi_1}\big)\ ,\quad S_r = \exp\big(L_{\chi_r}\big)\circ S_{r-1}\ ,\quad \end{aligned}$$

considering S χ as the limit (in formal sense) of the latter sequence for r →.

Compositions of Lie series are unavoidable in view of the following property: every near the identity canonical transformation of coordinates

$$\displaystyle \begin{aligned} p = p^{\prime} + \varphi_1(p^{\prime},q^{\prime}) + \varphi_2(p^{\prime},q^{\prime}) + \ldots \ ,\quad q = q^{\prime} + \psi_1(p^{\prime},q^{\prime}) + \psi_2(p^{\prime},q^{\prime}) + \ldots \end{aligned}$$

may be represented by a composition of Lie series. In general this is untrue for a single Lie series. For this reason the composition of Lie series is often replaced by the algorithm of Lie transform, introduced independently by Hori [34] and Deprit [15]. The two methods are formally equivalent. However, the composition of Lie series is in definitely better position as regards the convergence question (for instance in the case of Kolmogorov’s theorem). If the reader tries to reformulate the control of small divisors in the present notes using the Lie transform he or she will likely fail.

1.2 8 An Algorithm for Lie Transform

Contrary to Lie series, Lie transform can be constructed in a number of different ways. Here I present one of the formulations. Given a sequence {χ 1, χ 2, …} of generating functions define the Lie transform operator as

$$\displaystyle \begin{aligned} T_{{\chi}} = \sum_{s\ge 0} E_s {} \end{aligned} $$
(19)

with the sequence E s of linear operators recursively defined as

$$\displaystyle \begin{aligned} E_0 = {\textsf{1}}\ ,\quad E_s = \sum_{j=1}^{s} {{j}\over{s}}L_{{\chi}_j} E_{s-j}\ . {} \end{aligned} $$
(20)

The operator may be seen as a generalization of the exponential operator of Lie series. A straightforward remark is that if we choose the generating sequence χ = {χ 1, 0, 0, …} then \(T_{{\chi }} = \exp (L_{{\chi }_1})\). Moreover T χ has the same properties of the exponential operator of Lie series: it is linear and invertible, and distributes over products and Poisson brackets, i.e., T χ(f ⋅ g) = T χ f ⋅ T χ g and T χ {f, g} = {T χ f, T χ g} for any pair f, g of functions. The inverse requires some care: it has an elaborate expression which requires a second sequence of operators:

$$\displaystyle \begin{aligned} T_{\chi}^{-1} = \sum_{s\ge 0} G_j\ ,\quad G_0 = {\textsf{1}}\ ,\quad G_s = -\sum_{j=1}^{s} {{j}\over{s}} G_{s-j} L_{\chi_j}\ . {} \end{aligned} $$
(21)

However, using the latter formula for an actual calculation is not recommended: we shall see in a short a more effective method. The formula is useful for analytical convergence estimates. It should be remarked that the inverse is not elementary because the Lie transform may be interpreted as generated by the flow of a non autonomous vector field, which can not be inverted by a mere change of sign of the vector field (as it happens for Lie series). Precisely the latter idea is developed in the paper of Deprit [15].

Finally, T χ possesses the property expressed by the exchange theorem, namely

$$\displaystyle \begin{aligned} f(p,q)\Big\vert_{p=T_{\chi} p^{\prime},q=T_{\chi} q^{\prime}} = T_{\chi} f\Big\vert_{p^{\prime},q^{\prime}}\ . \end{aligned}$$

The scheme of application of T χ may also be represented by a triangular diagram similar to that of Lie series, as represented in Table 6. Here too the triangle is filled in by columns, and a function g = T χ f is found by adding up all contributions on the same line. The diagram also provides a straightforward method for calculating the inverse \(f=T_{\chi }^{-1}g\). Just proceed as follows: from the first line get f 0 = g 0 , and fill the column for f 0 ; from the second line get f 1 = g 1 − E 1 f 0 , and fill the column for f 1 ; from the third line get f 2 = g 2 − E 1 f 1 − E 2 f 0 , and fill the column for f 2 , and so on.

Table 6 The triangular diagram for Lie transform

1.3 8 Analytical Tools

Here I introduce some basic tools that allow us to discuss the convergence of Lie series and of composition of Lie series. I shall restrict my attention to the case of a phase space endowed with action-angle variables \(p\in {\mathcal {G}}\subset \mathbb {R}^n\) and \(q\in \mathbb {T}^n\), as considered in the present notes. However, the whole argument is based on the theory of holomorphic functions.

The first step requires introducing a family of complex domains

$$\displaystyle \begin{aligned} {\mathcal{D}}_{(1-d)({\varrho},\sigma)} = \Delta_{(1-d){\varrho}}\times\mathbb{T}^n_{(1-d)\sigma}\end{aligned} $$

with fixed ϱ, σ > 0 and 0 ≤ d < 1; here

$$\displaystyle \begin{aligned} {\Delta}_{{\varrho}} = \big\{p\in{\mathbb{C}}^n\>:\>|p|\le {\varrho}\big\} \ ,\quad {\mathbb{T}}^n_{\sigma} = \big\{q\in{\mathbb{C}}^n\>:\> |\,{\text{Im}}\, {q}| \le \sigma\big\}\ . {}\end{aligned} $$
(22)

In the case of one degree of freedom the domain is represented in Fig. 17. The action domain here is a polydisk Δϱ centered at the origin of \(\mathbb {C}^n\), which is enough for the proof of the theorem of Kolmogorov. However, the whole argument may be extended to the case of a complex domain \({\mathcal {G}}_{{\varrho }}=\bigcup _{p\in {\mathcal {G}}}\Delta _{{\varrho }}(p)\) constructed by making the union of all complex disks of radius ϱ centered at every point of the real domain \({\mathcal {G}}\) of the actions.

Fig. 17
figure 17

Construction of the family of complex domains

The second step is concerned with the extension of Cauchy’s estimates for the derivatives of holomorphic functions to the case of Lie derivatives. For a function f(p, q) which is holomorphic in \({\mathcal {D}}_{({\varrho },\sigma )}\) we shall use the supremum norm

$$\displaystyle \begin{aligned} \big|f \big|{}_{({\varrho},\sigma)} = \sup_{(p,q)\in{\mathcal{D}}_{({\varrho},\sigma)}} |f(p,q)|\ . {}\end{aligned} $$
(23)

We assume that |f|(ϱ,σ) is finite. Following Cauchy, the derivatives of the function f(p, q) are estimated as

$$\displaystyle \begin{aligned} \left|{{{\partial}{f}}\over{{\partial}{p}}}\right|{}_{(1-d)({\varrho},\sigma)} \le {{1}\over{d{\varrho}}}\big|f \big|{}_{({\varrho},\sigma)}\ ,\quad \left|{{{\partial}{f}}\over{{\partial}{q}}}\right|{}_{(1-d)({\varrho},\sigma)} \le {{1}\over{d\sigma}}\big|f \big|{}_{({\varrho},\sigma)}\ . \end{aligned}$$

Higher order derivatives can be estimated, too. However, for our purposes, it is better to obtain estimates for Lie derivatives. An appropriate approach is the following. Assume that we know the norm |χ|ϱ,σ of a generating function χ on the whole domain and the norm \(\|{f}\|{ }_{(1-d^{\prime })({\varrho },\sigma )}\) in a possibly smaller domain, with 0 ≤ d < 1. Then for d  < d < 1 one gets generally an estimate such as

$$\displaystyle \begin{aligned} \big|{L_{\chi} f}\big|{}_{(1-d)({\varrho},\sigma)} \le {{C}\over{d(d-d^{\prime}){\varrho}\sigma}} |{\chi}|{}_{{\varrho},\sigma} |{f}|{}_{(1-d^{\prime})({\varrho},\sigma)}\ . {}\end{aligned} $$
(24)

with some constant C ≥ 1 depending on the choice of the norm (and on the method of estimate). In the present case of the supremum norm a straightforward calculation gives C = 2n, because the Poisson bracket is expressed by the sum of 2n products of derivatives. However, a more careful estimate, using the fact that we are performing a derivative in a given direction, provides the better value C = 1.

The estimate of multiple Lie derivatives is more delicate. Suppose we know |χ|ϱ,σ and |f|ϱ,σ on the common domain \({\mathcal {D}}_{{\varrho },\sigma }\). If we want the evaluate \(\big |L_{\chi }^s f\big |{ }_{(1-d)({\varrho },\sigma )}\) in a restricted domain we can define δ = ds and estimate, in sequence,

$$\displaystyle \begin{aligned} \big|L_{\chi} f\big|{}_{(1-\delta)({\varrho},\sigma)} \>,\ \big|L_{\chi}^2 f\big|{}_{(1-2\delta)({\varrho},\sigma)} \>,\>\ldots\>,\> \>,\ \big|L_{\chi}^s f\big|{}_{(1-s\delta)({\varrho},\sigma)}\ .\end{aligned} $$

To this end we apply by recurrence the estimate (24) for a single derivative, setting step by step d  = 0, δ, …, (s − 1)δ. With some calculations we end up with the estimate (setting C = 1)

$$\displaystyle \begin{aligned} {{1}\over{s!}} \big|L_{\chi}^s f\big|{}_{(1-d)({\varrho},\sigma)} \le {{1}\over{e}} \left({{e}\over{d^2{\varrho}\sigma}}\right)^s |{\chi}|{}_{{\varrho},\sigma}^s |{f}|{}_{(1-d^{\prime})({\varrho},\sigma)}\ . \end{aligned}$$

1.4 8 Convergence of Lie Series and of the Composition of Lie Series

Substituting the latter estimate in the expression of Lie series we prove

Lemma 8

Let χ(p, q) be holomorphic and bounded in \({\mathcal {D}}_{({\varrho },\sigma )}\,\) . If the convergence condition

$$\displaystyle \begin{aligned} \left|\chi\right|{}_{({\varrho},\sigma)} < {{d^2{\varrho}\sigma}\over{2e}}\ ,\quad d < 1/2\end{aligned} $$

is satisfied, then the near the identity canonical transformation

$$\displaystyle \begin{aligned} p^{\prime} = \exp\big(L_{\chi}\big)p\ ,\quad q^{\prime} = \exp\big(L_{\chi}\big)q\end{aligned} $$

is holomorphic in \({\mathcal {D}}_{(1-d)({\varrho },\sigma )}\,\) , and

$$\displaystyle \begin{aligned} |p-p^{\prime}| < d{\varrho}\ ,\quad |q-q^{\prime}| < d\sigma\ . \end{aligned}$$
Fig. 18
figure 18

The deformation induced by the near the identity transformation of Lemma 8. The flow is denoted by ϕ, with inverse ϕ −1

By the way, the lemma is actually a reformulation of Cauchy’s theorem on existence and uniqueness of a local flow in the analytic case. The implications of the lemma can be understood looking at Fig. 18 and recalling that the transformation is defined through the flow generated by χ(p, q). The transformation is essentially a deformation of coordinates. Therefore if we consider it as defined on a domain \({\mathcal {D}}_{(1-d)({\varrho },\sigma )}\), with d < 1∕2 then the relation

$$\displaystyle \begin{aligned} {\mathcal{D}}_{(1-2d)({\varrho},\sigma)} \subset {\mathcal{D}}_{(1-d)({\varrho},\sigma)} \subset {\mathcal{D}}_{{\varrho},\sigma} {} \end{aligned} $$
(25)

holds true, so that there is a domain where the transformation is well defined.

Coming to the composition of Lie series, we may intepret it as a composition of flows. Therefore we should check that the relations (25) are still satisfied. The final result is expressed by

Proposition 9

Let the sequence of generating functions χ = {χ 1, χ 2, …} be holomorphic and bounded in \({\mathcal {D}}_{({\varrho },\sigma )}\,\) . If the convergence condition

$$\displaystyle \begin{aligned} \sum_{j\ge 1} \left|\chi_j\right|{}_{({\varrho},\sigma)} < {{d^2{\varrho}\sigma}\over{4e}}\ ,\quad d < 1/2 \end{aligned}$$

is satisfied, then the near the identity canonical transformation

$$\displaystyle \begin{aligned} p^{\prime} = S_{\chi} p\ ,\quad q^{\prime} = S_{\chi}q \end{aligned}$$

generated by the infinite composition of Lie series

$$\displaystyle \begin{aligned} S_{\chi} = \ldots\circ\exp\big(L_{\chi_3}\big) \circ\exp\big(L_{\chi_2}\big) \circ\exp\big(L_{\chi_1}\big) \end{aligned}$$

is holomorphic in \({\mathcal {D}}_{(1-d)({\varrho },\sigma )}\,\) , and

$$\displaystyle \begin{aligned} |p-p^{\prime}| < d{\varrho}\ ,\quad |q-q^{\prime}| < d\sigma\ . \end{aligned}$$

Similar results may be obtained also for the algorithm of Lie transform. However, they are not needed for the purposes of the present notes, thus I omit them.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giorgilli, A. (2019). Perturbation Methods in Celestial Mechanics. In: Baù, G., Celletti, A., Galeș, C., Gronchi, G. (eds) Satellite Dynamics and Space Missions. Springer INdAM Series, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-20633-8_2

Download citation

Publish with us

Policies and ethics