Skip to main content

An Investigation of Transmission Properties of Double-Exponential Pulses in Core-Clad Optical Fibers for Communication Application

  • Conference paper
  • First Online:
Ubiquitous Communications and Network Computing (UBICNET 2019)

Abstract

In this paper, a comparative analysis of the propagation of double exponential and Gaussian ultra-short pulses in fused-silica core-clad optical fibers has been presented. The present study has taken the non-linear propagation parameters from Schrodinger’s equation and for silica fiber into consideration. The analysis has been carried out for single-mode and multi-mode fibers, to study the effects of variation in pulse parameters and it has been observed that the double-exponential pulses have a bandwidth-efficiency ~23% over Gaussian pulses and may be useful as femtosecond-laser pulse shapes. It is found that double exponential pulses offer more resistance to dispersive effects than Gaussian pulses at longer distances and retain more power levels for higher input powers, while Gaussian pulses continue to decay. Finally, rapid decay in double-exponential pulses may make them suitable for time-and-wavelength-division-multiplexed passive optical networks (TWDM-PON) applications in optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takasaki, Y., Tanaka, M., Maeda, N., Yamashita, K., Nagano, K.: Optical pulse formats for fiber optic digital communications. IEEE Trans. Commun. 24(4), 404–413 (1976)

    Article  Google Scholar 

  2. Prilepsky, J.E., Derevyanko, S.A., Blow, K.J., Gabitov, I., Turitsyn, S.K.: Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels. Phys. Rev. Lett. 113, 013901 (2014)

    Article  Google Scholar 

  3. Amiranashvili, S., Bandelow, U., Akhmediev, N.: Recent progress in theory of nonlinear pulse propagation in optical fibers. In: Numerical Simulation of Optoelectronic Devices, Palma de Mallorca, pp. 131–132 (2014)

    Google Scholar 

  4. Hirlimann, C.: Pulsed optics. In: Rullière, C. (ed.) Femtosecond Laser Pulses. ADTP, pp. 25–56. Springer, New York (2005). https://doi.org/10.1007/0-387-26674-7_2

    Chapter  Google Scholar 

  5. Hirano, M., Nakanishi, T., Okuno, T., Onishi, M.: Silica-based highly nonlinear fibers and their application. IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009)

    Article  Google Scholar 

  6. Agrawal, G.P. (ed.): Pulse compression. In: Applications of Nonlinear Fiber Optics, 2nd edn., Chap. 6, pp. 245–300. Academic Press, Cambridge (2008)

    Google Scholar 

  7. Agrawal, G.P. (ed.): Fiber-optic communications. In: Applications of Nonlinear Fiber Optics, 2nd edn., Chap. 7, pp. 301–348. Academic Press, Cambridge (2008)

    Google Scholar 

  8. Agrawal, G.P. (ed.): Optical signal processing. In: Applications of Nonlinear Fiber Optics, 2nd edn., Chap. 8, pp. 349–396. Academic Press, Cambridge (2008)

    Google Scholar 

  9. Agrawal, G.P. (ed.): Quantum applications. In: Applications of Nonlinear Fiber Optics, 2d edn., Chap. 10, pp. 447–492. Academic Press, Cambridge (2008)

    Google Scholar 

  10. Santhosh Kumar, C., Kumar, R., Das, D.: Analysis of soliton interaction in optical fiber communication. Int. J. Sci. R. Inventions New Ideas 1, 15 (2013)

    Google Scholar 

  11. Rahimi, E., Nejad, S.M.: Analysis of super-Gaussian ultra-short pulse propagation in nonlinear optical fibers. In: 2008 International Symposium on High Capacity Optical Networks and Enabling Technologies, Penang, pp. 135–140 (2008)

    Google Scholar 

  12. Burgoyne, B., Godbout, N., Lacroix, S.: Nonlinear pulse propagation in optical fibers using second order moments. Opt. Express 15, 10075–10090 (2007)

    Article  Google Scholar 

  13. Wu, G.: Shape properties of pulses described by double exponential function and its modified forms. IEEE Trans. Electromagn. Compat. 56(4), 923–931 (2014)

    Article  Google Scholar 

  14. Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127(1–2), 287–296 (2001)

    Article  MathSciNet  Google Scholar 

  15. Pab Sumesh, E., Elias, E.: Multiwavelet optimized finite difference method to solve nonlinear schrödinger equation in optical fiber. In: IEEE Region 10 Annual International Conference, Proceedings/TENCON, Hyderabad (2008)

    Google Scholar 

  16. Gloge, D.: Optical fibers for communication. Appl. Opt. 13, 249–254 (1974)

    Article  Google Scholar 

  17. Gloge, D., Gardner, W.B.: Fiber design considerations. In: Miller, S.E., Chynoweth, A.G. (eds.) Optical Fiber Telecommunications, Chap. 6, pp. 151–165. Academic Press, Cambridge (1979)

    Google Scholar 

  18. Gloge, D., Marcatili, E.A.J., Marcuse, D., Personick, S.D.: Dispersion properties of fibers. In: Miller, S.E., Chynoweth, A.G. (eds.) Optical Fiber Telecommunications, Chap. 4, pp. 101–124. Academic Press, Cambridge (1979)

    Google Scholar 

  19. Marcuse, D., Gloge, D., Marcatili, E.A.J.: Guiding properties of fibers. In: Miller, S.E., Chynoweth, A.G. (eds.) Optical Fiber Telecommunications, Chap. 3, pp. 37–100. Academic Press, Cambridge (1979)

    Google Scholar 

  20. Mitra, P.P., Stark, J.B.: Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001)

    Article  Google Scholar 

  21. Vasilyev, M., Su, Y., McKinstrie, C.: Introduction to the special issue on nonlinear-optical signal processing. J. Sel. Topics Quantum Electron. 14(3), 527–528 (2008)

    Article  Google Scholar 

  22. Malitson, H.: Interspecimen comparison of the refractive index of fused silica. JOSA 55(10), 1205–1208 (1965)

    Article  Google Scholar 

  23. Walmsley, I.A., et al.: The role of dispersion in ultrafast optics. Rev. Sci. Instrum. 72(1), 1 (2001)

    Article  Google Scholar 

  24. Gonçalves, A.M.: Pulse propagation in optical fibers (2012). Online Reference. Accessed 3 Sept 2018

    Google Scholar 

  25. Thottappillil, R., Uman, M.A.: Comparison of lightning return stroke models. J. Geophys. Res. 98(D112), 903–914 (1992)

    Google Scholar 

  26. Luo, Y., et al.: Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2). J. Lightwave Technol. 31(4), 587–593 (2013)

    Article  Google Scholar 

  27. Rota-Rodrigo, S., Gonzalez-Herraez, M., Lopez-Amo, M.: Compound lasing fiber optic ring resonators for sensor sensitivity enhancement. J. Lightwave Technol. 33(12), 2690–2696 (2015)

    Article  Google Scholar 

  28. Ladányi, L., Menkyna, R., Mullerova, J.: Analysis of dispersion effects in Gaussian pulses with the various chirp parameters. In: International Conference on Elitech, June, Bratislava (2013)

    Google Scholar 

  29. Olshansky, R., Keck, D.B.: Pulse broadening in graded-index optical fibers. Appl. Opt. 15, 483–491 (1976)

    Article  Google Scholar 

  30. Tooley, M.H.: Electronic circuits: fundamentals and applications. Newnes, pp. 77–78 (2006). ISBN 978–0-7506-6923-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustav Bhowmick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chollangi, A., Ravi Krishnan, N., Bhowmick, K. (2019). An Investigation of Transmission Properties of Double-Exponential Pulses in Core-Clad Optical Fibers for Communication Application. In: Kumar, N., Venkatesha Prasad, R. (eds) Ubiquitous Communications and Network Computing. UBICNET 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 276. Springer, Cham. https://doi.org/10.1007/978-3-030-20615-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20615-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20614-7

  • Online ISBN: 978-3-030-20615-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics