Skip to main content

Prospects of Biochar for Carbon Sequestration and Livelihood Improvement in the Tibetan Grasslands

  • Chapter
  • First Online:
  • 403 Accesses

Abstract

As the key part of HKH, the Qinghai-Tibetan plateau supports the largest population of pastoralists (10 million) in the world. Livestock production on the plateau produces large quantities of dung, but approximately 80% is collected for energy purposes such as cooking and heating needs, which is a link with carbon cycling being a source of carbon to soil and livelihood activity i.e by providing energy and imrpoving grassland productivity. However, inefficient combustion of the dung results in indoor as well as environmental pollution with adverse impact on human health. Heating biomass in oxygen-limited conditions transforms the biomass into bio-oil, syn-gas and a carbon-enriched material known as biochar. Biochar can be used to store carbon in soil and to improve soil quality. This chapter explores the importance of biochar for grasslands restoration and the potential of dung biochar for carbon capture and for increasing grassland productivity. In addition, future biochar research directions to restore grasslands and to improve the livelihood of the pastoralists are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Buss, W., and O. Mašek. 2016. High-VOC biochar-effectiveness of post-treatment measures and potential health risks related to handling and storage. Environmental Science and Pollution Research 23 (19): 19580–19589.

    CAS  Google Scholar 

  • Buss, W., M.C. Graham, G. MacKinnon, et al. 2016. Strategies for producing biochars with minimum PAH contamination. Journal of Analytical and Applied Pyrolysis 119: 24–30.

    CAS  Google Scholar 

  • Buss, W., S. Jansson, and O. Mašek. 2018. Unexplored potential of novel biochar-ash composites for use as organo-mineral fertilizers. Journal of Cleaner Production 208: 960–967.

    Google Scholar 

  • Cai, X. 2003. Characteristics of soil degradation of the “three river” region in Tibet. Soils Fertility 3: 4–7.

    Google Scholar 

  • Chang, X.F., X.X. Zhu, S.P. Wang, et al. 2014. Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan plateau. Biogeosciences 11: 3495–3503.

    CAS  Google Scholar 

  • Chase, T.N., R.A. Pielke Sr., J.A. Knaff, et al. 2000. A comparison of regional trends in 1979–1997 depth averaged tropospheric temperatures. International Journal of Climatology 20: 503–518.

    Google Scholar 

  • Chen, H., Q. Zhu, C. Peng, et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology 19: 2940–2955.

    Google Scholar 

  • Cong, H., O. Masek, L. Zhao, et al. 2018. Slow pyrolysis performance and energy balance of corn stover in continuous pyrolysis-based poly-generation system. Energy & Fuels 32 (3): 3743–3750.

    CAS  Google Scholar 

  • Crombie, K., and O. Mašek. 2014. Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions. Bioresource Technology 162: 148–156.

    CAS  Google Scholar 

  • ———. 2015. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7: 349–361.

    CAS  Google Scholar 

  • Dutta, T., E. Kwon, S.S. Bhattacharya, et al. 2017. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. GCB Bioenergy 9: 990–1004.

    CAS  Google Scholar 

  • Frauenfeld, O.W., T.J. Zhang, and M.C. Serreze. 2005. Climate change and variability using European Centre for Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. Journal of Geophysical Research 110: D02101. https://doi.org/10.1029/2004JD005230.

    Article  Google Scholar 

  • Gerald, W.N., J.L. Han, and R.J. Long. 2003. The Yak. 2nd ed. RAP Publication: Bangkok.

    Google Scholar 

  • Ghidotti, M., D. Fabbri, O. Masek, et al. 2017. Source and biological response of biochar organic compounds released into water; relationships with bio-oil composition and carbonization degree. Environmental Science and Technology 51 (11): 6580–6589.

    CAS  Google Scholar 

  • Gibon, A. 2005. Managing grassland for production, the environment and the landscape. Challenges at the farm and landscape level. Livestock Production Science 96: 11–31.

    Google Scholar 

  • Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soils 35: 219–230.

    CAS  Google Scholar 

  • Gong, P., J. Wang, L. Yu, et al. 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing 34: 2607–2654.

    Google Scholar 

  • Haberl, H., K.H. Erb, F. Krausmann, et al. 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 104: 12942–12945.

    CAS  Google Scholar 

  • He, Z.Q., D.M. Endale, H.H. Schomberg, et al. 2009. Total phosphorus, zinc, copper, and manganese concentrations in cecil soil through 10 years of poultry litter application. Soil Science 174: 687–695.

    CAS  Google Scholar 

  • Hopkins, A. 2009. Relevance and functionality of semi-natural grassland in Europe? status quo and future prospective. In Proceedings of the International Workshop of the SALVERE-Project, 6–11. Raumberg-Gumpenstein: Agricultural Research and Education Centre.

    Google Scholar 

  • Jeffery, S., F.G.A. Verheijen, M.V.D. Velde, et al. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144: 175–187.

    Google Scholar 

  • Jiang, S., and D. Zhou. 2006. The impact of cattle dung deposition on grasslands in the Songnen Grassland. Acta Prataculturae Sinica 15: 30–35.

    Google Scholar 

  • Kammann, C.I., S. Linsel, J.W. Gößling, et al. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil 345: 195–210.

    CAS  Google Scholar 

  • Kang, L., X. Han, Z. Zhang, et al. 2007. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences 362: 997–1008.

    Google Scholar 

  • Kuang, X.X., and J.J. Jiao. 2016. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres 121: 3979–4007.

    Google Scholar 

  • Laird, D.A. 2008. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100: 178–181.

    Google Scholar 

  • Lavorel, S., K. Grigulis, P. Lamarque, et al. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99: 135–147.

    Google Scholar 

  • Lehmann, J. 2006. Black is the new green. Nature 442: 624–626.

    Google Scholar 

  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: an introduction. In Biochar for environmental management: Science and technology, ed. J. Lehmann and S. Joseph, 1–10. Earthscan: London.

    Google Scholar 

  • Leonard, W.R., and M.H. Crawford. 2002. The human biology of pastoral populations, 133. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Li, W. 2017. An overview of ecological research conducted on the Qinghai-Tibetan Plateau. Journal of Resources and Ecology 8: 1–4.

    Google Scholar 

  • Li, J.H., Y.J. Yang, B.W. Li, et al. 2014. Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau. PLoS One 9: e103266. https://doi.org/10.1371/journal.pone.0103266.

    Article  CAS  Google Scholar 

  • Li, L., Y. Zhang, L. Liu, et al. 2018. Spatiotemporal patterns of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000–2015. Remote Sensing 10: 1525.

    Google Scholar 

  • Lin, X.W., S.P. Wang, X.Z. Ma, et al. 2009. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biology and Biochemistry 41: 718–725.

    CAS  Google Scholar 

  • Lindeman-Matthies, P., R. Briegel, B. Schüpbach, et al. 2010. Aesthetic preference for a Swiss alpine landscape: The impact of different agricultural land-use with different biodiversity. Landscape and Urban Planning 98: 99–109.

    Google Scholar 

  • Liu, J.D., J.M. Liu, H.W. Linderholm, et al. 2012. Observation and calculation of the solar radiation on the Tibetan Plateau. Energy Conversion and Management 57: 23–32.

    Google Scholar 

  • Liu, S., K. Zamanian, P.M. Schleuss, et al. 2018. Degrdation of Tibetan grasslands: Consquences for carbon and nutrient cycles. Agriculture, Ecosytems and Environment 252: 93–104.

    CAS  Google Scholar 

  • Lu, X.Y., J.H. Fan, Y. Yan, et al. 2013. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosy, Northern Tibet. PLoS One 8: e59054.

    CAS  Google Scholar 

  • Luo, C., J. Tian, P. Zhu, et al. 2018. Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorbent. Royal Society Open Science 5: 181266. https://doi.org/10.1098/rsos.181266.

    Article  CAS  Google Scholar 

  • Manya, J.J. 2012. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology 46: 7939–7954.

    CAS  Google Scholar 

  • Nan, Z. 2005. The grassland farming system and sustainable agricultural development in China. Grassland Science 51: 15–19.

    Google Scholar 

  • Nguyen, T.T., C.Y. Xu, I. Tahmasbian, et al. 2017. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288: 79–96.

    CAS  Google Scholar 

  • Ni, J. 2002. Carbon storage in grasslands of China. Journal of Arid Environments 50: 205–218.

    Google Scholar 

  • Ocak, S. 2016. Transhumance in Central Anatolia: A resilient interdependence between biological and cultural diversity. Journal of Agricultural and Environmental Ethics 29: 439–453.

    Google Scholar 

  • Pepin, N., R.S. Bradley, H.F. Diaz, et al. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424–430.

    Google Scholar 

  • Pope, C.A., and D.W.H. Dockery. 2006. Effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association 56: 709–742.

    CAS  Google Scholar 

  • Poschlod, P., and M. WallisDeVries. 2002. The historical and socioeconomic perspective of calcareous grasslands-lessons from the distant and recent past. Biological Conservation 104: 361–376.

    Google Scholar 

  • Qiu, J. 2008. The third pole. Nature 454: 393–396.

    CAS  Google Scholar 

  • Quétier, F., F. Rivoal, P. Marty, et al. 2010. Social representations of an alpine grassland landscape and socio-political discourses on rural development. Regional Environmental Change 10: 119–130.

    Google Scholar 

  • Rafiq, M.K., S.D. Joseph, F. Li, et al. 2017. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health; characterization and initial field trials. Science of the Total Environment 607 (16): 184–194.

    Google Scholar 

  • Scurlock, J.M.O., and D.O. Hall. 1998. The global carbon sink: A grassland perspective. Global Change Biology 4: 229–233.

    Google Scholar 

  • Shimizu, M., S. Marutani, A.R. Desyatkin, et al. 2009. The effect of manure application on carbon dynamics and budgets in a managed grassland of Southern Hokkaido, Japan. Agriculture, Ecosystem & Environment 130: 31–40.

    Google Scholar 

  • Sohi, S., E. Lopez-Capel, E. Krull, et al. 2009. Biochar, climate change and soil: A review to guide future research. In: CSIRO Land and Water Science Report. 05/09: 1–56.

    Google Scholar 

  • Spokas, K.A., K.B. Cantrell, J.M. Novak, et al. 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality 41: 973–989.

    CAS  Google Scholar 

  • Tian, H.Q., S.Q. Wang, J.Y. Liu, et al. 2006. Patterns of soil nitrogen storage in China. Global Biogeochemical Cycles 20: GB1001. https://doi.org/10.1029/2005GB002464.

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (UNEP). 2007. In Global outlook for ice and snow, ed. J. Eamer, A. Hugo, and P. Prestrud. Nairobi: United Nations Environment Programme. http://www.unep.org/geo/ice_snow.

    Google Scholar 

  • Vaccari, F.P., S. Baronti, E. Lugato, et al. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34: 231–238.

    CAS  Google Scholar 

  • Vitousek, P.M., H.A. Mooney, J. Lubchenco, et al. 1997. Human domination of earth’s ecosystems. Science 277: 494–499.

    CAS  Google Scholar 

  • Vitousek, P.M., S. Porder, B.Z. Houlton, et al. 2010. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20 (1): 5–15.

    Google Scholar 

  • Wang, Y., and R. Liu. 2018. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment 628–629: 1139–1148.

    Google Scholar 

  • Wang, S., Y. Wang, E. Schnug, et al. 2002. Effects of nitrogen and sulphur fertilization on oats yield, quality and digestibility and nitrogen and sulphur metabolism of sheep in the Inner Mongolia Steppes of China. Nutrient Cycling in Agroecosystems 62: 195–202.

    Google Scholar 

  • Wang, X.D., X.H. Zhong, S.Z. Liu, et al. 2008. Regional assessment of environmental vulnerability in the Tibetan plateau: Development and application of a new method. Journal of Arid Environment 72: 1929–1939.

    Google Scholar 

  • Wang, J., X. Pan, Y. Liu, et al. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil 360: 287–298.

    CAS  Google Scholar 

  • Wei, D., X. Ri, and T. Tarchen. 2015. Considerable methane uptake by alpine grasslands despite the cold climate: In situ measurements on the central Tibetan Plateau, 2008–2013. Global Change Biology 21: 777–788.

    Google Scholar 

  • Weidemann, E., W. Buss, M. Edo, et al. 2017. Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar—a screening study. Environmental Science and Pollution Research 25 (4): 3933–3940.

    Google Scholar 

  • Wen, L., S. Dong, Y. Li, et al. 2013. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS One 8: e58432.

    CAS  Google Scholar 

  • Woolf, D., J.E. Amonette, F.A. Street-Perrot, et al. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1: 56. https://doi.org/10.1038/ncomms1053.

    Article  CAS  Google Scholar 

  • Wu, S.G., and J.X. Feng. 1992. Characteristics, exploitation and protection of biological resources in the Tibetan Plateau. In Proceedings of the First Symposium of the Qinghai-Tibet Plateau Association of China. Beijing: Science Press.

    Google Scholar 

  • Xu, X.D., C.G. Lu, and X.H. Shi. 2008. World water tower: An atmospheric perspective. Geophysical Research Letters 35: L20815. https://doi.org/10.1029/2008GL035867.

    Article  CAS  Google Scholar 

  • Xu, X.Y., Y.H. Zhao, J. Sima, et al. 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology 241: 887–899.

    CAS  Google Scholar 

  • Yan, P., G.R. Dong, X.B. Zhang, et al. 2000. Preliminary results of the study on wind erosion in the Qinghai-Tibetan Plateau using 137Cs technique. Chinese Science Bulletin 45: 1019–1024.

    Google Scholar 

  • Yang, R.Y. 2002. Studies on current situation of grassland degradation and sustainable development in western China. Pratacultural Science 19: 23–27.

    CAS  Google Scholar 

  • Yang, K., H. Wu, J. Qin, et al. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change 112: 79–91.

    Google Scholar 

  • Yao, T., F. Wu, L. Ding, et al. 2016. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. National Science Review 2: 468–488.

    Google Scholar 

  • Zhang, X., H. Wang, L. He, et al. 2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research 20: 8472–8483.

    CAS  Google Scholar 

  • Zhang, Y., B. Li, and D. Zheng. 2014. Datasets of the boundary and area of the Tibetan Plateau. Acta Geographica Sinica (Supplment) 69: 164–168.

    Google Scholar 

  • Zhang, J., B. Huang, L. Chen, et al. 2018. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chemical Speciation & Bioavailability 30 (1): 57–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafiq, M.K. et al. (2020). Prospects of Biochar for Carbon Sequestration and Livelihood Improvement in the Tibetan Grasslands. In: Shang, Z., Degen, A., Rafiq, M., Squires, V. (eds) Carbon Management for Promoting Local Livelihood in the Hindu Kush Himalayan (HKH) Region. Springer, Cham. https://doi.org/10.1007/978-3-030-20591-1_10

Download citation

Publish with us

Policies and ethics