Skip to main content

Novel Technological Applications for Latent and Blood-Stained Fingermark Aging Studies

  • Chapter
  • First Online:

Abstract

At the present time, there are no standard methodologies to reliably determine the age of (latent) fingermarks recovered from crime scenes. Estimating the time of deposition of this type of evidence is a complex challenge that remains scientifically unsolved in the forensic domain. This chapter addresses the effort to investigate and evaluate the age of fingermarks, and answer the question: how much information can “imaging technologies” provide on fingermark aging? The objective is to introduce the reader to novel applications of existing technologies—Optical Profilometry (OP) and visible wavelength Hyperspectral Imaging (HSI)—that can visualize and record variations in the topography of ridges and follow spectral changes in blood-stained fingermarks, respectively. OP has been typically used for the 3D analysis of surface roughness of materials; whereas HSI has been previously used to detect and identify blood stains in a forensic context and estimate their age in laboratory settings. These non-destructive, contactless, imaging technologies eliminate the need for manipulating friction ridge skin impressions and minimizing sample destruction. Most importantly, they allow the simultaneous collection of qualitative and quantitative data that can be analyzed using spatio-temporal statistical models to investigate the mechanisms involved in ridge degradation. OP and HSI, among other technologies, are establishing new foundational research to integrate the age variable in future fingermark examination flowcharts. This inclusion could potentially reduce identification errors that are caused by time inconsistencies between the evidence discovered and the crime committed, as well as maximize the use of resources by decreasing the number of traces to be processed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This term refers to latent or invisible impressions (undetectable to the naked eye), plastic or molded impressions (e.g. prints on clay or wax) and patent (aka visible prints) unintentionally made by friction ridge skin on a surface. They require a specific enhancement or processing for analysis. The term fingerprint refers to controlled setting (e.g. inked prints taken from detainees).

  2. 2.

    Strengthening Forensic Science in the United States: A Path Forward. Committee on Identifying the Needs of the Forensic Sciences Community, National Research Council. 2009. ISBN 978-0-309-13135-3.

  3. 3.

    Issues also noted by the Scottish Report “The Fingerprint Inquiry”; APS Group Scotland. 2011. ISBN: 978-0-85759-002-2.

  4. 4.

    ACE-V: Analysis, Comparison, Evaluation, and Verification, referred as being a standard scientific method in the comparison and identification of friction ridge impressions.

  5. 5.

    Refers to the prevalence of cases that incorrectly associates a person to a recovered fingermark.

  6. 6.

    http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Crime_and_criminal_justice_statistics,_data_2008-2013.

  7. 7.

    As mentioned on page 141 of the REGULATION (EU) _o …/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of the Horizon 2020—the Framework Programme for Research and Innovation (2014–2020).

  8. 8.

    ANZPAA NIFS (Australian New Zealand Policing Advisory Agency) report “End-to-end forensic identification process project”, in 2012.

  9. 9.

    Secondary victimization (also known as post crime victimization or double victimization) is the re-traumatization of the (sexual assault, abuse or rape) crime victim. It is an indirect result of assault which occurs through the responses of individuals and institutions to the victim. The types of secondary victimization include victim blaming, inappropriate behavior or language by medical personnel and by other organizations with access to the victim post assault [33].

References

  1. Girod A, Ramotowski R, Weyermann C (2012) Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci Int 223(1–3):10–24

    Article  CAS  PubMed  Google Scholar 

  2. Ng PHR et al (2009) Detection of illicit substances in fingerprints by infrared spectral imaging. Anal Bioanal Chem 394(8):2039–2048

    Article  CAS  PubMed  Google Scholar 

  3. Rowell F, Hudson K, Seviour J (2009) Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. Analyst 134(4):701–707

    Article  CAS  PubMed  Google Scholar 

  4. Wertheim K (2003) Fingerprint age determination: is there any hope? J Forensic Ident 53(1):42–49

    Google Scholar 

  5. Girod A, Ramotowski R, Lambrechts S, Misrielal P, Aalders M, Weyermann C (2016) Fingermark age determinations: Legal considerations, review of the literature and practical propositions. Forensic Sci Int 262:212–226

    Article  CAS  PubMed  Google Scholar 

  6. Archer NE, Charles Y, Elliott J, Jickells S (2005) Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int 154(2–3):224–239

    Article  CAS  PubMed  Google Scholar 

  7. Humphreys JD, Porter G, Bell M (2008) The quantification of fingerprint quality using a relative contrast index. Forensic Sci Int 178(1):46–53

    Article  PubMed  Google Scholar 

  8. Croxton RS, Baron MG, Butler D, Kent T, Sears VG (2010) Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int 199(1–3):93–102

    Article  CAS  PubMed  Google Scholar 

  9. Weyermann C, Roux C, Champod C (2011) Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis. J Forensic Sci 56(1):102–108

    Article  CAS  PubMed  Google Scholar 

  10. Merkel R, Gruhn S, Dittmann J, Vielhauer C, Brautigam A (2012) On non-invasive 2D and 3D chromatic white light image sensors for age determination of latent fingerprints. Forensic Sci Int 222:52–70

    Article  PubMed  Google Scholar 

  11. Bailey MJ, Bright RS, Croxton S, Francese LS, Ferguson S, Hinder S, Jickells BJ, Jones BN, Jones SG, Kazarian JJ, Ojeda RP, Webb R, Wolstenholme R, Bleay S (2012) Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry X-ray photoelectron spectroscopy. Anal Chem 84(20):8514–8523

    Article  CAS  PubMed  Google Scholar 

  12. Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S (2012) Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int 222(1–3):318–326

    Article  CAS  PubMed  Google Scholar 

  13. Francese S, Bradshaw R, Ferguson LS, Wolstenholme R, Clench MR, Bleay S (2013) Beyond the ridge pattern: multi-informative analysis of latent fingermarks by MALDI mass spectrometry. Analyst 138(15):4215–4228

    Article  CAS  PubMed  Google Scholar 

  14. De Alcaraz-Fossoul J, Mestres Patris C, Balaciart Muntaner A, Barrot Feixat C, Gené Badia M (2013) Determination of latent fingerprint degradation patterns—a real fieldwork study. Int J Legal Medicine 127(4):857–870

    Article  Google Scholar 

  15. Barros RM, Faria BF, Kuckelhaus SA (2013) Morphometry of latent palmprints as a function of time. Sci Justice 53(4):402–408

    Article  PubMed  Google Scholar 

  16. De Alcaraz-Fossoul J, Roberts KA, Barrot-Feixat C, Hogrebe G, Gené Badia M (2016) Fingermark ridge drift. Forensic Sci Int 258:26–31

    Article  PubMed  Google Scholar 

  17. De Alcaraz-Fossoul J, Mestres Patris C, Barrot Feixat C, Brandelli D, McGarr L, Stow K, Gené Badia M (2016) Latent fingermark aging patterns (Part I): minutiae count as one indicator of degradation. J Forensic Sci 61(2):322–333

    Article  PubMed  CAS  Google Scholar 

  18. De Alcaraz-Fossoul J, Barrot Feixat C, Tasker J, McGarr L, Stow K, Carreras-Marin C, Gené Badia M (2016) Latent fingermark aging patterns (Part II): colour contrast between ridges and furrows as one indicator of degradation. J Forensic Sci 61(4):947–958

    Article  PubMed  CAS  Google Scholar 

  19. De Alcaraz-Fossoul J, Barrot Feixat C, Tasker J, Carreras-Marin C, Zapico SC, Gené Badia M (2017) Latent fingermark aging patterns (Part III): discontinuity index as one indicator of degradation. J Forensic Sci 62(5):1180–1187

    Article  PubMed  CAS  Google Scholar 

  20. Dorakumbura BN, Becker T, Lewis SW (2016) Nanomechanical mapping of latent fingermarks: a preliminary investigation into the changes in surface interactions and topography over time. Forensic Sci Int 267:16–24

    Article  PubMed  Google Scholar 

  21. Wei Q, Zhang M, Ogorevc B, Zhang X (2016) Recent advances in the chemical imaging of human fingermarks (a review). Analyst 141(22):6172–6189

    Article  CAS  PubMed  Google Scholar 

  22. De Alcaraz-Fossoul J, Mancenido M, Soignard E, Silverman N (2018) Application of 3D imaging technology to latent fingermark aging studies. J Forensic Sci (https://doi.org/10.1111/1556-4029.13891; ahead of print)

  23. Li B, Beveridge P, O’Hare WT, Islam M (2011) The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci Int 212(11):198–204

    CAS  PubMed  Google Scholar 

  24. Li B, Beveridge P, O’Hare WT, Islam M (2013) The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53(3):270–277

    Article  CAS  PubMed  Google Scholar 

  25. Dror IE, Charlton D, Péron AE (2006) Contextual information renders experts vulnerable to making erroneous identifications. Forensic Sci Int 156(1):74–78

    Article  PubMed  Google Scholar 

  26. Charlton D, Fraser-Mackenzie PA, Dror IE (2010) Emotional experiences and motivating factors associated with fingerprint analysis. J Forensic Sci 55(2):385–393

    Article  PubMed  Google Scholar 

  27. Fraser-Mackenzie PA, Dror IE, Wertheim K (2013) Cognitive and contextual influences in determination of latent fingerprint suitability for identification judgments. Sci Justice 53(2):144–153

    Article  PubMed  Google Scholar 

  28. Kellman PJ, Mnookin JL, Erlikhman G, Garrigan P, Ghose T, Mettler E, Charlton D, Dror IE (2014) Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty. PLoS ONE 9(5):e94617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ulery BT, Hicklin RA, Buscaglia J, Roberts MA (2011) Accuracy and reliability of forensic latent fingerprint decisions. PNAS 108(19):7733–7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mnookin J, Kellman PJ, Dror I, Erlikhman G, Garrigan P, Ghose T, Metler E, Charlton D (2016) Error rates for latent fingerprinting as a function of visual complexity and cognitive difficulty. Report. NIJ Award 2009-DN-BX-K225

    Google Scholar 

  31. Dror I (2013) The ambition to be scientific: human expert performance and objectivity. Sci Justice 53(2):81–82

    Article  PubMed  Google Scholar 

  32. Kassin SM, Kukucka J, Lawson VZ, DeCarlo J (2014) Does video recording alter the behavior of police during interrogation? A mock crime-and-investigation study. Law Hum Behav 38(1):73–83

    Article  PubMed  Google Scholar 

  33. Campbell R, Sefl T, Barnes HE, Ahrens CE, Wasco SM, Zaragoza-Diesfeld Y (1999) Community services for rape survivors: enhancing psychological well-being or increasing trauma? J Consult Clin Psychol 67(6):847–858

    Article  CAS  PubMed  Google Scholar 

  34. Wertheim K (2003) Fingerprint age determination: is there any hope? J Forensic Ident 53(1):42–49

    Google Scholar 

  35. Champod C, Lennard C, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions, 1st ed., CRC Press

    Google Scholar 

  36. Hicklin RA, Buscaglia J, Roberts MA, Meagher SB, Burge MJ, Vera D, Pantzer LR, Calvin C (2011) Latent fingerprint quality: a survey of examiners. J Forensic Ident 61(4):385–418

    Google Scholar 

  37. Merkel R (2014) New solutions for an old challenge: chances and limitations of optical, non-invasive acquisition and digital processing techniques for the age estimation of latent fingerprints. Doctoral Thesis Universität Magdeburg

    Google Scholar 

  38. de Groot P (2015) Principles of interference microscopy for the measurement of surface topography. Adv Opt Photon 7:1–65

    Article  CAS  Google Scholar 

  39. Cadd S, Islam M, Manson P, Bleay S (2015) Fingerprint composition and aging: a literature review. Sci Justice 55(4):219–238

    Article  PubMed  Google Scholar 

  40. Matuszewski S, Szafałowicz M (2013) A simple computer-assisted quantification of contrast in a fingerprint. J Forensic Sci 58(5):1310–1313

    Article  PubMed  Google Scholar 

  41. van Dam A, Aalders MC, Todorovski T, van Leeuwen TG, Lambrechts SA (2016) On the autofluorescence of aged fingermarks. Forensic Sci Int 258:19–25

    Article  PubMed  CAS  Google Scholar 

  42. Rosa R, Giovanardi R, Bozza A, Veronesi P, Leonelli C (2017) Electrochemical impedance spectroscopy: a deeper and quantitative insight into the fingermarks physical modifications over time. Forensic Sci Int 273:144–152

    Article  CAS  PubMed  Google Scholar 

  43. Williams DK, Brown CJ, Bruker J (2011) Characterization of children’s latent fingerprint residues by infrared microspectroscopy: forensic implications. Forensic Sci Int 206(1–3):161–165

    Article  CAS  PubMed  Google Scholar 

  44. Girod A, Weyermann C (2014) Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Sci Int 238:68–82

    Article  CAS  PubMed  Google Scholar 

  45. Croxton RS, Baron MG, Butler D, Kent T, Sears VG (2006) Development of a GC-MS method for the simultaneous analysis of latent fingerprint components. J Forensic Sci 51(6):1329–1333

    Article  CAS  PubMed  Google Scholar 

  46. Wolstenholme R, Francese S, Bradshaw R (2010) Study of lipid distribution and degradation in latent fingerprints by spectroscopic imaging techniques. Sci Justice 50(1):37–38

    Article  Google Scholar 

  47. Ferguson L, Bradshaw R, Wolstenholme R, Clench M, Francese S (2011) Two-step matrix application for the enhancement and imaging of latent fingermarks. Anal Chem 83(14):5585–5591

    Article  CAS  PubMed  Google Scholar 

  48. Ferguson LS, Wulfert F, Wolstenholme R, Fonville JM, Clench MR, Carolan VA, Francese S (2012) Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst 137(20):4686–4692

    Article  CAS  PubMed  Google Scholar 

  49. Bradshaw R, Bleay S, Wolstenholme R, Clench MR, Francese S (2013) Towards the integration of matrix assisted laser desorption ionisation mass spectrometry imaging into the current fingermark examination workflow. Forensic Sci Int 232(1–3):111–124

    Article  CAS  PubMed  Google Scholar 

  50. Ferguson LS, Creasey S, Wolstenholme R, Clench MR, Francese S (2013) Efficiency of the dry-wet method for the MALDI-MSI analysis of latent fingermarks. J Mass Spectrom 48(6):677–684

    Google Scholar 

  51. Reed H, Stanton A, Wheat J, Kelley J, Davis L, Rao W, Smith A, Owen D, Francese S (2016) The Reed-Stanton press rig for the generation of reproducible fingermarks: towards a standardised methodology for fingermark research. Sci Justice 56(1):9–17

    Article  CAS  PubMed  Google Scholar 

  52. Liu F, Liang J, Shen L, Yang M, Zhang D, Lai Z (2017) Case study of 3D fingerprints applications. PLoS ONE 12(4):e0175261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Stoehr B, McClure S, Höflich A, Al Kobaisi M, Hall C, Murphy PJ, Evans D (2016) Unusual nature of fingerprints and the implications for easy-to-clean coatings. Langmuir 32(2):619–625

    Article  CAS  PubMed  Google Scholar 

  54. Finnis J, Lewis J, Davidson A (2013) Comparison of methods for visualizing blood on dark surfaces. Sci Justice 53(2):178–186

    Article  CAS  PubMed  Google Scholar 

  55. Home Office CAST (2013) Fingerprint Sourcebook, Chapter 3, 3.1 Acid Dyes, 1st ed., Home Office

    Google Scholar 

  56. Li B, Beveridge P, O’Hare WT, Islam M (2014) The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains. Sci Justice 54(6):432–438

    Article  PubMed  Google Scholar 

  57. Passi N, Kumar Garg R, Yadav M, Sarup Singh R, Kharoshah MA (2012) Effect of luminol and bleaching agent on the serological and DNA analysis from bloodstain. Egypt J Forensic Sci 2(2):54–61

    Article  Google Scholar 

  58. Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148(1):37–45

    Article  CAS  PubMed  Google Scholar 

  59. Bremmer RH, Nadort A, van Leeuwen TG, van Gemert MJC, Aalders MCG (2011) Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Sci Int 206(1–3):166–171

    Article  CAS  PubMed  Google Scholar 

  60. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int 180(1):37–42

    Article  PubMed  CAS  Google Scholar 

  61. Chun-Yen Lin A, Hsieh H, Tsai L, Linacre A, Lee JC (2007) Forensic applications of infrared imaging for the detection and recording of latent evidence. J Forensic Sci 52(5):1148–1150

    Article  Google Scholar 

  62. McLaughlin G, Sikirzhytski V, Lednev IK (2013) Circumventing substrate interference in the Raman spectroscopic identification of blood stains. Forensic Sci Int 231(1–3):157–166

    Article  CAS  PubMed  Google Scholar 

  63. Stoilovic M (1991) Detection of semen and blood stains using polilight as a light source. Forensic Sci Int 51(2):289–296

    Article  CAS  PubMed  Google Scholar 

  64. Strasser S, Zink A, Kada G, Hinterdorfer P, Peschel O, Heckl WM, Nerlich AG, Thalhammer S (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170(1):8–14

    Article  PubMed  Google Scholar 

  65. Turrina S, Filippini G, Atzei R, Zaglia E, De Leo D (2008) Validation studies of rapid stain identification-blood (RSID-blood) kit in forensic caseworks. Forensic Sci Int Genet Suppl Ser 1(1):74–75

    Article  Google Scholar 

  66. Wawryk J, Odell M (2005) Fluorescent identification of biological and other stains on skin by the use of alternative light sources. J Clin Forensic Med 12(6):296–301

    Article  PubMed  Google Scholar 

  67. Gardner T, Anderson T (2009) Criminal evidence: principles and cases, 7th edn. Cengage Learning, Belmont, CA

    Google Scholar 

  68. Adebsi S (2009) Fingerprint studies—the recent challenges and advancements: a literary view. Internet J Biol Anthropol 2(2):3

    Google Scholar 

  69. Midkiff C (1993) Lifetime of a latent print how long can you tell? J Forensic Ident 43(4):386–396

    Google Scholar 

  70. Bremmer RH, de Bruin KG, van Leeuwen TG, van Gemert MJC, Aalders MCG (2012) Forensic quest for age determination of bloodstains. Forensic Sci Int 216(1–3):1–11

    Article  CAS  PubMed  Google Scholar 

  71. Janchaysang S, Sumriddetchkajorn S, Buranasiri P (2012) Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates part 1: developing blood stain discrimination criteria. Appl Opt 51(29):6984–6996

    Article  PubMed  Google Scholar 

  72. Janchaysang S, Sumriddetchkajorn S, Buranasiri P (2013) Tunable filter-based multispectral imaging for detection of blood stains on construction material substrates part 2: realization of rapid blood stain detection. Appl Opt 52(20):4898–4910

    Article  PubMed  Google Scholar 

  73. Edelman GJ, Gaston E, van Leeuwen TG, Cullen PJ, Aalders MCG (2012) Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int 223(1–3):28–39

    Article  CAS  PubMed  Google Scholar 

  74. Cadd S, Li B, Beveridge P, O’Hare WT, Campbell A, Islam M (2016) Non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: part 1. Sci Justice 56(3):181–190

    Article  PubMed  Google Scholar 

  75. Cadd S, Li B, Beveridge P, O’Hare WT, Islam M (2016) The non-contact detection and identification of blood stained fingerprints using visible wavelength hyperspectral imaging: part II effectiveness on a range of substrates. Sci Justice 56(3):191–200

    Article  PubMed  Google Scholar 

  76. Cadd S, Li B, Beveridge P, O’Hare WT, Campbell A, Islam M (2016) A comparison of visible wavelength reflectance hyperspectral imaging and Acid Black 1 for the detection and identification of blood stained fingerprints. Sci Justice 56(4):247–255

    Article  PubMed  Google Scholar 

  77. Weyermann C, Ribaux O (2012) Situating forensic traces in time. Sci Justice 52(2):68–75

    Article  PubMed  Google Scholar 

  78. Neumann C, Stern H (2016) Forensic examination of fingerprints: past, present, and future. Chance 29(1):9–16

    Article  Google Scholar 

  79. Cadd S, Li B, Beveridge P, O’Hare WT, Islam M (2018) Age determination of blood-stained fingerprints using visible wavelength reflectance hyperspectral imaging. J Imag 4(12):141

    Article  Google Scholar 

Download references

Acknowledgements

Prof. M. Islam would like to thank Dr. Samuel Cadd, Dr. Bo Li and colleagues at Chemicam Ltd. for the HSI research and results described in this chapter.

Dr. J. De Alcaraz-Fossoul would like to thank Dr. Emmanuel Soignard, Dr. Michelle Mancenido, Dr. Carme Barrot Feixat, Dr. Sara C. Zapico, Ms. Lindsey Porter and all collaborators at Arizona State University, the University of Barcelona, California State University—Los Angeles, Forensic Focus Ltd. and the Catalonia PoliceMossos d’Esquada who have contributed, in part, to the research presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep De Alcaraz-Fossoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Alcaraz-Fossoul, J., Islam, M. (2019). Novel Technological Applications for Latent and Blood-Stained Fingermark Aging Studies. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_3

Download citation

Publish with us

Policies and ethics