Skip to main content

Advances in the Analysis of Explosives

  • Chapter
  • First Online:
Emerging Technologies for the Analysis of Forensic Traces

Abstract

During last decades, the forensic opportunity to detect and identify explosives became more and more important both to protect the safety of citizens and to support the investigations against terrorists and organised crime. The analytical chemistry of explosives has a long tradition of spot test and more traditional approaches, such as chromatography, but has also new tools, such as electro-optical ones, allowing both point detection and remote sensing. In this chapter, four spectroscopic laser based techniques are presented highlighting working principles and capabilities in discriminating explosive compounds at trace level, in field operation, locally or remotely. For each techniques, the detection limits and drawbacks are reported in the application to trace sensing. Such electro-optics tools do not aim to replace the traditional laboratory methods, rather to support them in security applications and in narrowing the area under investigation, reducing the number of samples selected for laboratory analysis. More traditional approaches are then presented and discussed to illustrate the latest development with respect to on-site testing, sampling and analysis by chromatography, electrophoresis and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. General Assembly of the United Nations (1948) Universal Declaration of Human Rights, Article 3. http://www.un.org/en/documents/udhr/index.shtml#a3. Last access 28th June 2018

  2. National Consortium for the Study of Terrorism and Responses to Terrorism (START), University of Maryland (2018) The Global Terrorism Database (GTD) [Data file]. Retrieved from https://www.start.umd.edu/gtd

  3. Marshall M, Oxley JC (2011) Explosives: the threats and the materials. In: Marshall M, Oxley JC (eds) Aspects of explosives detection. Elsevier, Amsterdam, The Netherlands, pp 11–26

    Google Scholar 

  4. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. Wiley-VCH & Co. KGaA, Weinheim

    Book  Google Scholar 

  5. Urbansky T (1964) Chemistry and technology of explosives, vol I–III and Urbanski T (1984) Chemistry and technology of explosives, vol IV. Pergamon Press, Oxford

    Google Scholar 

  6. Yeager K (2012) Improvised explosives characteristics, detection, and analysis. In: Forensic investigation of explosions, 2nd edn. CRC Press, Boca Raton, FL, pp 493–538

    Google Scholar 

  7. Schulte-Ladbeck R, Kolla P, Karst U (2006) Recent methods for the determination of peroxide-based explosives. Anal Bioanal Chem 386:559–565

    Article  CAS  PubMed  Google Scholar 

  8. Burks RM, Hage DS (2009) Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem 395:301–313

    Article  CAS  PubMed  Google Scholar 

  9. Meaney MS, McGuffin VL (2008) Luminescence-based methods for sensing and detection of explosives. Anal Bioanal Chem 391:2557–2576

    Article  CAS  PubMed  Google Scholar 

  10. https://erncip-project.jrc.ec.europa.eu/networks/tgs/dewsl

  11. Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301:629–639

    Article  CAS  Google Scholar 

  12. Crespy C, Duvauchelle P, Kaftandjian V, Soulez F, Ponard P (2010) Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization. Nucl Instrum Methods Phys Res 623:1050–1060

    Article  CAS  Google Scholar 

  13. Harding G, Harding A (2007) Chapter 8—X-ray diffraction imaging for explosives detection. In: Yinon (ed) Counterterrorist detection techniques of explosives, pp 199–235

    Google Scholar 

  14. Buffler A, Tickner J (2010) Detecting contraband using neutrons: challenges and future directions. Radiat Meas 45:1186–1192

    Article  CAS  Google Scholar 

  15. International Civil Aviation Organization (ICAO) (2012) Working paper: high-level conference on aviation security (HLCAS), Montréal, 12 to 14 September 2012. http://www.icao.int/Meetings/avsecconf/Documents/WP14/LIQUIDS,AEROSOLSANDGELS.en.pdf. Last access 18th June 2018

  16. Connell S (2016) Toward a “Smart City” IH and security professionals collaborate on early. Detection of bombs. The synergist 36–39. https://www.soph.uab.edu/sites/edu.dsc/files/MAY2016_pgs35-39.pdf. Last access 18th June 2018

  17. Romolo FS, Connell S, Ferrari C, Suarez G, Sauvain JJ, Hopf NB (2016) Locating bomb factories by detecting hydrogen peroxide. Talanta 160:15–20

    Article  CAS  PubMed  Google Scholar 

  18. Desmet C, Degiuli A, Ferrari C, Romolo FS, Blum L, Marquette C (2017) Electrochemical sensor for explosives precursors’ detection in water. Challenges 8:10–21

    Article  Google Scholar 

  19. Ferrari C, Ulrici A, Romolo FS (2017) Expert system for bomb factory detection by networks of advance sensors. Challenges 8:18

    Article  Google Scholar 

  20. Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosives detection techniques. Talanta 88:14–29

    Article  CAS  PubMed  Google Scholar 

  21. Beveridge A (2012) Forensic investigation of explosions. CRC Press, Boca Raton, FL

    Google Scholar 

  22. Royds D, Lewis S, Taylor AM (2005) A case study in forensic chemistry: the Bali bombings. Talanta 67:262–268

    Article  CAS  PubMed  Google Scholar 

  23. Winefordner JD, Gornushkin IB, Correll T, Gibb E, BW Smith, N (2004) Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J Anal At Spectrom 19:1061–1083

    Google Scholar 

  24. López-Moreno C, Palanco C, DeLucia C Jr, Miziolek AW, Rose A, Walters RA, Whitehouse A, Laserna JJ (2006) Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J Anal At Spectrom 21:55–60

    Google Scholar 

  25. Gottfried JL, De Lucia FC, Jr Munson CA, Miziolek AW (2008) Strategies for residue explosives detection using laser-induced breakdown spectroscopy. J Anal At Spectrom 23:205–216

    Article  CAS  Google Scholar 

  26. Lazic V, Palucci A, Jovicevic S, Poggi C, Buono E (2009) Analysis of explosive and other organic residues by laser induced breakdown spectroscopy. Spectrochim Acta Part B 64:1028–1039

    Article  CAS  Google Scholar 

  27. Portnov A, Rosenwaks S, Bar I (2003) Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl Optics 42:2835–2842

    Article  CAS  Google Scholar 

  28. Baudelet M, Boueri M, Yu J, Mao SS, Piscitelli V, Mao X, Russo RE (2007) Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis. Spectrochim Acta, Part B 62:1329–1334

    Article  CAS  Google Scholar 

  29. Babushok VI, DeLucia FC Jr, Dagdigian PJ, Gottfried JL, Munson CA, Nusca MJ, Miziolek AW (2007) Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX). Spectrochim Acta, Part B 62:1321–1328

    Article  CAS  Google Scholar 

  30. Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395:283–300

    Google Scholar 

  31. NIST Atomic Spectra Database National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/PhysRefData/ASD/lines_form.html. Accessed 01 Mar 2016

  32. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/libs.html

  33. http://www.appliedphotonics.co.uk

  34. Gardiner DJ (1989) Practical Raman spectroscopy. Springer, Amsterdam

    Google Scholar 

  35. Wallin S, Pettersson A, Östmark H, Hobro A (2009) Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem 395:259–274. https://doi.org/10.1007/s00216-009-2844-3

  36. Chance Carter J, Michael Angel S, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Standoff detection of high explosive materials at 50 meters in Ambient light conditions using a small Raman instrument. Appl Spectrosc 59(6):769–775

    Article  PubMed  Google Scholar 

  37. Gaft M, Nagli L (2008) UV gated Raman spectroscopy for standoff detection of explosives. Opt Mater 30(11):1739–1746

    Google Scholar 

  38. https://www.nato.int/cps/en/natohq/news_104536.htm

  39. Chirico R, Almaviva S, Colao F, Fiorani L, Nuvoli M, Schweikert W, Schnürer F, Cassioli L, Grossi S, Murra D, Menicucci I, Angelini F, Palucci A (2016) Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications. Sensors 16(2016):0008. https://doi.org/10.3390/s16010008

  40. Almaviva S, Chirico R, Nuvoli M, Palucci A, Schnürer F, Schweikert W (2015) A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes. Talanta 144(2015):420–426

    Google Scholar 

  41. Jander P, Noll R (2009) Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy. Appl Spectrosc 63:559–563

    Article  CAS  PubMed  Google Scholar 

  42. Eliasson C, Macleod NA, Matousek P (2007) Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Anal Chem 79(21):8185–8189

    Google Scholar 

  43. Kim M, Chung H, Kemper M (2008) Robust Raman measurement of hydrogen peroxide directly through plastic containers under the change of bottle position and its long-term prediction reproducibility. J Pharm Biomed Anal 48:592–597

    Google Scholar 

  44. Ramírez-Cedeño ML, Gaensbauer N, Félix-Rivera H, Ortiz-Rivera W, Pacheco-Londoño L, Hernández-Rivera SP (2012) Fiber optic coupled Raman based detection of hazardous liquids concealed in commercial products. Int J Spectrosc 1–7

    Google Scholar 

  45. Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H (2009) Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance. Propellants, Explos, Pyrotech 34(297–306):297

    Article  CAS  Google Scholar 

  46. Stewart SP, Bell SEJ, McAuley D, Baird I, Speers SJ, Kee G (2012) Determination of hydrogen peroxide concentration using a handheld Raman spectrometer: Detection of an explosives precursor. Forensic Sci Int 216:e5–e8

    Google Scholar 

  47. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) SERS enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    Article  CAS  Google Scholar 

  48. Efrima S, Metiu H (1979) Classical theory of light scattering by an adsorbed molecule. J Chem Phys 70:1602–1613

    Article  CAS  Google Scholar 

  49. Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces. J Chem Phys 73:3023–3037

    Article  CAS  Google Scholar 

  50. Lewis IR, Daniel NW, Griffiths PP (1997) Interpretation of Raman spectra of nitro-containing explosives materials. Part I: group frequency and structural class membership. Appl Spectrosc 51(12):1854–1867

    Google Scholar 

  51. Hakonen A, Andersson PA, Stenbæk Schmidt M, Rindzevicius T, Kall M (2015) Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 893:1–13

    Article  CAS  PubMed  Google Scholar 

  52. Almaviva S, Botti S, Cantarini L, Fantoni R, Palucci A, Puiu A, Rufoloni A (2013) Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy. J Raman Spectrosc 44:463–468

    Article  CAS  Google Scholar 

  53. Gruzdkov YA, Gupta YM (2001) Vibrational properties and structure of pentaerythritol tetranitrate. J Phys Chem A 105:6197–6202

    Article  CAS  Google Scholar 

  54. Gong XD, Xiao HM (2001) Studies on the molecular structure, vibrational spectra and thermodynamic properties of organic nitrate using density functional theory and ab initio methods. J Mol Struct (Theochem) 572:213–221

    Article  CAS  Google Scholar 

  55. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic compound. Wiley, New York

    Google Scholar 

  56. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticle. Appl Spectrosc 56:150

    Google Scholar 

  57. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338A

    Google Scholar 

  58. Perney NMB, García de Abajo FJ, Baumberg JJ, Tang A, Netti MC, Charlton MDB, Zoorob ME (2007) Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Phys Rev B 76:035426

    Google Scholar 

  59. Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Kall M (2015) Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 893:1e13

    Google Scholar 

  60. Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 20:305

    Google Scholar 

  61. Giubileo G, Colao F and Puiu A (2012) Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data. Laser Phys 22(6):1033–1037. ISSN 1054660X

    Google Scholar 

  62. Giubileo G, Lai A, Piccinelli D, Puiu A (2010) Laser diagnostic technology for early detection of pathogen infestation in orange fruits. Nucl Instrum Methods A. https://doi.org/10.1016/j.nima.2010.02.265

  63. Puiu A, Giubileo G, Lai A (2014) Investigation of plant-pathogen interaction by laser-based photoacoustic spectroscopy. Int J Thermophys 15:2237–2245

    Article  CAS  Google Scholar 

  64. Yinon J, Zitrin S (1981) The analysis of explosives. Pergamon Press, Oxford

    Google Scholar 

  65. Yinon J (1999) Forensic and environmental detection of explosives. Wiley, Chichester

    Google Scholar 

  66. Tamiri T, Zitrin S (2013) Explosives: analysis in Encyclopedia of forensic sciences, 2nd edn, pp 64–68

    Google Scholar 

  67. Song-im N, Benson S, Lennard C (2012) Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci Int 222:102–110

    Article  CAS  PubMed  Google Scholar 

  68. Fisher D, Zach R, Matana Y, Elia P, Shustack S, Sharon Y, Zeiri Y (2017) Bomb swab: can trace explosive particle sampling and detection be improved? Talanta 174:92–99

    Article  CAS  PubMed  Google Scholar 

  69. Douse JMF (1982) Trace analysis of explosives in handswab extracts using amberlite XAD-7 porous polymer beads, silica capillary column gas chromatography with electron-capture detection and thin-layer chromatography. J Chromatogr 234:415–425

    Article  CAS  Google Scholar 

  70. Douse JMF (1985) Trace analysis of explosives at the low nanogram level in handswab extract using columns of amberlite XAD-7 porous polymer beads and silica capillary column gas chromatography with thermal energy analysis and electron capture detection. J Chromatogr 328:155–165

    Article  CAS  Google Scholar 

  71. Twibell JD, Wright T, Sanger DG, Bramley RK, Lloyd JBF, Downs NS (1984) The efficient extraction of some common organic explosives from hand swabs for analysis by gas liquid and thin-layer chromatography. J Forensic Sci 29:277–283

    CAS  Google Scholar 

  72. Speers SJ, Doolan K, McQuillan J, Wallace JS (1994) Evaluation of improved methods for the recovery and detection of organic and inorganic cartridge discharge residues. J Chromatogr A 674:319–327

    Article  CAS  Google Scholar 

  73. Northrop DM, Mac Crehan WA (1992) Sample collection, preparation, and quantitation in the micellar electrokinetic capillary electrophoresis of gunshot residues. J Liquid Chromatogr 15:1041–1062

    Article  CAS  Google Scholar 

  74. Jane I, Brookes PG, Douse JMF, O’Callaghan KA (1983) Detection of gunshot residues via analysis of their organic constituents. In: Proceedings of the international symposium on the analysis and detection of explosives, Quantico, US Government Publication, pp 475–483

    Google Scholar 

  75. MacCrehan WA, Smith KD, Rowe WF (1998) Sampling protocols for the detection of smokeless powder residues using capillary electrophoresis. J Forensic Sci 43:119–124

    Article  CAS  PubMed  Google Scholar 

  76. Gassner AL, Weyermann C (2016) LC–MS method development and comparison of sampling materials for the analysis of organic gunshot residues. Forensic Sci Int 264:47–55

    Article  CAS  PubMed  Google Scholar 

  77. Taudte RV, Roux C, Blanes L, Horder M, Kirkbride KP, Beavis A (2016) The development and comparison of collection techniques for inorganic and organic gunshot residues. Anal Bioanal Chem 408:2567–2576

    Article  CAS  PubMed  Google Scholar 

  78. Almog J (2006) Forensic science does not start in the lab: the concept of diagnostic field tests. J Forensic Sci 1228–1234

    Google Scholar 

  79. Almog J, Zitrin S (2011) Colorimetric detection of explosives. In: Marshall MM, Oxley JC (eds) Aspects of explosives detection. Elsevier, Amsterdam, The Netherlands, pp 41–58

    Google Scholar 

  80. Chabaud KR, Thomas JL, Torres MN, Oliveira S, McCord B (2018) Simultaneous colorimetric detection of metallic salts contained in low explosives residue using a microfluidic paper-based analytical device (mPAD). Forensic Chem 9:35–41

    Article  CAS  Google Scholar 

  81. Arshad A, Wang H, Bai X, Jiang R, Xu S, Wang L (2019) Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 206:16–22

    Article  CAS  Google Scholar 

  82. Bagheri N, Khataee A, Hassanzadeh J, Habibi B (2018) Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite. J Hazard Mater 360:233–242

    Article  CAS  PubMed  Google Scholar 

  83. Ewing RG, Waltman MJ, Atkinson DA, Grate JW, Hotchkiss PJ (2013) The vapor pressures of explosives. Trac-Trends Anal Chem 42:35–48

    Article  CAS  Google Scholar 

  84. Gaurav MAK, Rai PK (2009) Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. J Hazard Mater 172:1652–1658

    Article  CAS  PubMed  Google Scholar 

  85. Guerra P, Lai H, Almirall JR (2008) Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry. J Sep Sci 31:2891–2898

    Article  CAS  PubMed  Google Scholar 

  86. Fan W, Almirall JR (2014) High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS). Anal Bioanal Chem 406:2189–2195

    Article  CAS  PubMed  Google Scholar 

  87. Guerra-Diaz P, Gura S, Almirall JR (2010) Dynamic planar solid phase microextraction—ion mobility spectrometry for rapid field air sampling and analysis of illicit drugs and explosives. Anal Chem 82:2826–2835

    Article  CAS  PubMed  Google Scholar 

  88. McEneff GL, Murphy B, Webb T, Wood D, Irlam R, Mills J, Green D, Barron L (2018) Sorbent film-coated passive samplers for explosives vapour detection part A: materials optimisation and integration with analytical technologies. Sci Rep 8, Article number 5816

    Google Scholar 

  89. Lotspeich E, Kitts K, Goodpaster J (2012) Headspace concentrations of explosive vapors in containers designed for canine testing and training: theory, experiment, and canine trials. Forensic Sci Int 220(1–3):130–134

    Article  CAS  PubMed  Google Scholar 

  90. Hayes JE, McGreevy PD, Forbes SL, Laing G, Stuetz RM (2018) Critical review of dog detection and the influences of physiology, training, and analytical methodologies. Talanta 185:499–512

    Article  CAS  PubMed  Google Scholar 

  91. Twibell JD, Home JM, Smalldon KW, Higgs DG (1982) Transfer of nitroglycerine to hands during contact with commercial explosives. J Forensic Sci 27:783–791

    CAS  PubMed  Google Scholar 

  92. Kolla P (1991) Trace analysis of explosives from complex mixtures with sample pretreatment and selective detection. J Forensic Sci 36:1342–1359

    Article  CAS  Google Scholar 

  93. Bouvier E, Oehrle SA (1995) Analysis and identification of nitroaromatic and nitroamine explosives in water using HPLC and photodiode array detection. LC-GC INT 8:338–346

    Google Scholar 

  94. Thomas JL, Donnelly CC, Lloyd EW, Mothershead RF, Miller ML (2017) Development and validation of a solid-phase extraction sample cleanup procedure for the recovery of trace levels of organic explosives in soil. Forensic Sci Int 284:65–77

    Article  CAS  PubMed  Google Scholar 

  95. Thomas JL, Donnelly CC, Lloyd EW, Mothershead RF, Miller JV, McCollamb DA, Miller ML (2018) Application of a co-polymeric solid phase extraction cartridge to residues containing nitro-organic explosives. Forensic Chem 11(2018):38–46

    Article  CAS  Google Scholar 

  96. Veresmortean C, Covaci A (2018) Hyphenated and non-hyphenated chromatographic techniques for trace level explosives in water bodies—a review. Int J Environ Anal Chem 98:387–412

    Article  CAS  Google Scholar 

  97. DeHaan JD (1975) Quantitative differential thermal analysis of nitrocellulose propellants. J Forensic Sci 20:243–253

    Article  CAS  PubMed  Google Scholar 

  98. Kolla P (1994) Gas chromatography, liquid chromatography and ion chromatography adapted to the trace analysis of explosives. J Chromatogr A 674:309–318

    Article  CAS  Google Scholar 

  99. Moore S, Schantz M, MacCrehan W (2010) Characterization of three types of semtex (H, 1A, and 10). Propellants, Explos, Pyrotech 35:540–549

    Article  CAS  Google Scholar 

  100. Stefanuto PH, Perrault K, Focant JF, Forbes S (2015) Fast chromatographic method for explosive profiling. Chromatography 2:213–224

    Article  CAS  Google Scholar 

  101. Marder D, Tzanani N, Prihed H, Gura S (2018) Trace detection of explosives with a unique large volume injection gas chromatography-mass spectrometry (LVI-GC-MS) method. Anal Methods 10:2712–2721

    Article  CAS  Google Scholar 

  102. Tsai CW, Milam SJ, Tipple CA (2017) Exploring the analysis and differentiation of plastic explosives by comprehensive multidimensional gas chromatography mass spectrometry (GC × GC–MS) with a statistical approach. Forensic Chem 6:10–18

    Article  CAS  Google Scholar 

  103. Gruber B, Weggler BA, Jaramillo R, Murrell KA, Piotrowski PK, Dorman FL (2018) Comprehensive two-dimensional gas chromatography in forensic science: a critical review of recent trends. Trends Anal Chem 105:292–301

    Article  CAS  Google Scholar 

  104. EPA (1992) 8330 method—nitroaromatics and nitramines by high performance liquid chromatography (HPLC). EPA Method 1–21

    Google Scholar 

  105. King RM (1995) The work of the explosives & gunshot residues of the forensic science service (UK). In: Advances in forensic sciences—13th meeting of association of forensic sciences, vol 3, Dusseldorf, 22nd–28th 1993, pp 52–55

    Google Scholar 

  106. Casetta B, Garofolo F (1994) Characterization of explosives by liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry using electrospray ionization and parent-ion scanning techniques. Org Mass Spectrom 29:517–525

    Article  CAS  Google Scholar 

  107. Martin-Alberca C, Garcia-Ruiz C (2014) Analytical techniques for the analysis of consumer fireworks. TrAC Trends Anal Chem 56:27–36

    Article  CAS  Google Scholar 

  108. Northrop DM, Martire DE, MacCrehan WA (1991) Separation and identification of organic gunshot and explosive constituents by micellar electrokinetic capillary electrophoresis. Anal Chem 63:1038–1042

    Article  CAS  Google Scholar 

  109. Kennedy S, Caddy B, Douse JMF (1995) Capillary electrophoresis of explosives. In: Advances in forensic sciences—13th meeting of association of forensic sciences, vol 3, Dusseldorf, 22nd–28th 1993, pp 204–209

    Google Scholar 

  110. Bailey CG, Yao J (1998) Separation of explosives using capillary electrochromatography. Anal Chem 70:3275–3279

    Article  CAS  PubMed  Google Scholar 

  111. Sarazin C, Delaunay N, Varenne A, Costanza C, Eudes V, Gareil P (2010) Simultaneous capillary electrophoresis analysis of inorganic anions and cations in post-blast extracts of acid-aluminium mixtures. J Sep Sci 33:3177–3183

    Article  CAS  PubMed  Google Scholar 

  112. Sarazin C, Delaunay N, Varenne A, Vial J, Costanza C, Eudes V, Minet JJ, Gareil P (2010) Identification and determination of inorganic anions in real extracts from pre and post-blast residues by capillary electrophoresis. J Chromatogr A 1217:6971–6978

    Article  CAS  Google Scholar 

  113. Sarazin C, Delaunay N, Costanza C, Eudes V, Gareil P (2011) Capillary electrophoresis analysis of inorganic cations in post-blast residue extracts applying a guanidinium-based electrolyte and bilayer-coated capillaries. Electrophoresis 33:1828–1891

    Google Scholar 

  114. Sarazin C, Delaunay N, Costanza C, Eudes V, Gareil P (2013) On the use of capillary electrophoresis for the determination of inorganic anions and cations, and carbohydrates in residues collected after a simulated suicide bombing attack. Talanta 103:301–305

    Article  CAS  PubMed  Google Scholar 

  115. Martin-Alberca C, Fernndez de la Ossa MA, Saiz J, Ferrando JL, Garcia-Ruis C (2014) Anions in pre- and post-blast consumer fireworks by capillary electrophoresis. Electrophoresis 35:3272–3280

    Article  CAS  PubMed  Google Scholar 

  116. Calcerrada M, Gonzalez-Herraez M, Garcia-Ruiz C (2016) Recent advances in capillary electrophoresis instrumentation for the analysis of explosives. Trends Anal Chem 75:75–85

    Article  CAS  Google Scholar 

  117. Cohen MJ, Karasek FW (1970) Plasma chromatography—a new dimension for gas chromatography and mass spectrometry. J Chromatographic Science 8:330–337

    Article  CAS  Google Scholar 

  118. Eiceman GA, Karpas Z, Hill HH (2014) Detection of explosives by IMS. In: Ion mobility spectrometry, 3rd edn. CRC Press, Boca Raton, pp 269–285

    Google Scholar 

  119. Karpas Z (1989) Forensic science applications of ion mobility spectrometry. Forensic Sci Rev 1:103–119

    CAS  PubMed  Google Scholar 

  120. Kolla P (1997) The application of analytical methods to the detection of hidden explosives and explosives devices. Angew Chem Int Ed Engl 36:800–811

    Article  Google Scholar 

  121. Huang SD, Kolaitis L, Lubman DM (1987) Detection of explosives using laser desorption in ion mobility spectrometry/mass spectrometry. Appl Spectrosc 41:1371–1376

    Article  CAS  Google Scholar 

  122. Fetterolf DD, Clark TD (1993) Detection of trace explosive evidence by ion mobility spectrometry. J Forensic Sci 38:28–39

    Article  CAS  Google Scholar 

  123. Lawrence AH, Neudorfl P, Stone JA (2001) The formation of chloride adducts in the detection of dinitro-compounds by ion mobility spectrometry. Int J Mass Spectrom 209:185–195

    Article  CAS  Google Scholar 

  124. Tabrizchi M, Ilbeigi V (2010) Detection of explosives by positive corona discharge ion mobility spectrometry. J Hazard Mater 176:692–696

    Article  CAS  PubMed  Google Scholar 

  125. Clark A, Deas MR, Kosmidis C, Ledingham KWD, Marshall A, Singhal RP (1995) Explosives vapor identification in ion mobility spectrometry using a tunable laser ionization source: a comparison with conventional 63Ni ionization. JAERI-Conf, vol 95-005, pp 521–529

    Google Scholar 

  126. Doring HR, Arnold G, Budovich VL (2001) VIP sources for ion mobility spectrometry. Int J Ion Mobility Spectrom 4:67–70

    CAS  Google Scholar 

  127. Shahraki H, Tabrizchi M, Farrokhpor H (2018) Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. J Hazard Mater 357:1–9

    Article  CAS  PubMed  Google Scholar 

  128. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529

    Article  CAS  PubMed  Google Scholar 

  129. Daum KA, Atkinson DA, Ewing RG, Knighton WB, Grimsrud EP (2001) Resolving interferences in negative mode ion mobility spectrometry using selective reactant ion chemistry. Talanta 54:299–306

    Article  CAS  PubMed  Google Scholar 

  130. Buxton TL, de Harrington P (2001) Rapid multivariate curve resolution applied to identification of explosives by ion mobility spectrometry. Anal Chim Acta 434:269–282

    Article  CAS  Google Scholar 

  131. Denson S, Denton B, Sperline R, Rodacy P, Gresham C (2002) Ion mobility spectrometry utilizing micro-Faraday finger array detector technology. Int J Ion Mobility Spectrom 5:100–103

    CAS  Google Scholar 

  132. Su CW, Babcock K (2002) The effect of sampling materials on the formation of different clusters during the ion mobility spectrometry detection of secondary high explosives. Int J Ion Mobility Spectrom 5:55–58

    CAS  Google Scholar 

  133. Wu C, Steiner WE, Tornatore PS, Matz LM, Siems WF, Atkinson DA, Hill HH (2002) Construction and characterization of a high-flow, high-resolution ion mobility spectrometer for detection of explosives after personnel portal sampling. Talanta 57:123–134

    Article  CAS  PubMed  Google Scholar 

  134. Matz LM, Tornatore PS, Hill HH (2001) Evaluation of suspected interferents for TNT detection by ion mobility spectrometry. Talanta 54:171–179

    Article  CAS  PubMed  Google Scholar 

  135. Lai H, Leung A, Magee M, Almirall JR (2010) Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry. Anal Bioanal Chem 396:2997–3007

    Article  CAS  PubMed  Google Scholar 

  136. Lai H, Guerra P, Joshi M, Almirall JR (2008) Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry. J Sep Sci 31:402–412

    Article  CAS  PubMed  Google Scholar 

  137. Rodacy P, Reber S, Walker P, Andre JV (2002) Underwater chemical sensing of explosive targets using ion mobility spectroscopy. Int J Ion Mobility Spectrom 5:59–62

    CAS  Google Scholar 

  138. Hilton CK, Krueger CA, Midey AJ, Osgood M, Wu J, Wu C (2010) Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESI-HRIMS). Int J Mass Spectrom 298:64–71

    Article  CAS  Google Scholar 

  139. Romolo FS, Cassioli L, Grossi S, Cinelli G, Russo MV (2013) Surface-sampling and analysis of TATP by gas chromatography/mass spectrometry. Forensic Sci Int 224:96–100

    Article  CAS  PubMed  Google Scholar 

  140. Sigman ME, Clark CD, Fidler R, Geiger CL, Clausen CA (2006) Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization. Rapid Commun Mass Spectrom 20:2851–2857

    Article  CAS  PubMed  Google Scholar 

  141. Widmer L, Watson S, Schlater K, Crowson A (2002) Development of an LC/MS method for the trace analysis of triacetone triperoxide. Analyst 127:1627–1632

    Article  CAS  PubMed  Google Scholar 

  142. Xu X, van de Craats AM, Kok EM, de Bruyn P (2004) Trace analysis of peroxide explosives by high performance liquid-chromatography–atmospheric pressure chemical ionization-mass spectrometry (HPLC–APCI-MS) for forensic applications. J Forensic Sci 49:1230–1236

    CAS  PubMed  Google Scholar 

  143. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311(5767):1566–1570

    Article  CAS  PubMed  Google Scholar 

  144. Cooks RG, Ouyang Z, Cotte-Rodríguez I, Takáts Z, Talaty N, Chen H, Cooks RG (2005) Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal Chem 77(21):6755–6764

    Article  CAS  PubMed  Google Scholar 

  145. Takáts Z, Cotte-Rodriguez I, Talaty N, Chen H, Cooks RG (2005) Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun, pp 1950–1952

    Google Scholar 

  146. Rowell F, Seviour J, Limc AY, Elumbaring-Salazar CG, Jason Loke J, Mae J (2012) Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry. Forensic Sci Int 221:84–91

    Article  CAS  PubMed  Google Scholar 

  147. Na N, Zhang C, Zhao M, Zhang S, Yang C, Fang X, Zhang X (2007) Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J Mass Spectrom 42:1079–1085

    Article  CAS  PubMed  Google Scholar 

  148. Garcia-Reyes JF, Harper JD, Salazar GA, Charipar NA, Zheng Ouyang Z, Cooks RG (2011) Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal Chem 83:1084–1092

    Article  CAS  PubMed  Google Scholar 

  149. Tsai C-W, Tipple CA, Yost RA (2017) Application of paper spray ionization for explosives analysis. Rapid Commun Mass Spectrom 31:1565–1572

    Article  CAS  PubMed  Google Scholar 

  150. Pavlovich MJ, Musselman B, Hall AB (2018) Direct analysis in real time—mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrom Rev 37:171–187

    Article  CAS  PubMed  Google Scholar 

  151. Forbes TP, Sisco E (2018) Recent advances in ambient mass spectrometry of trace explosives. Analyst 143:1948–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. United States Bureau of Alcohol, Tobacco, Firearms (2017) Annual list of explosive materials. https://www.federalregister.gov/documents/2017/12/28/2017-28010/commerce-in-explosives-2017-annual-list-of-explosive-materials. Last access 28th June 2018

  153. Yinon J, Zitrin S (1993) Modern methods and applications in analysis of explosives. Wiley, Chichester

    Google Scholar 

  154. Fan W, Young M, Canino J, Smith J, Oxley J, Almirall JR (2012) Fast detection of triacetone triperoxide (TATP) from headspace using planar solid-phase microextraction (PSPME) coupled to an IMS detector. Anal Bioanal Chem 403:401–408

    Article  CAS  PubMed  Google Scholar 

  155. Nilles JM, Connell T, Stokes ST, Dupont Durst H (2010) Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants, Explos, Pyrotech 35:446–451. https://www.federalregister.gov/documents/2017/12/28/2017-28010/commerce-in-explosives-2017-annual-list-of-explosive-materials

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Saverio Romolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romolo, F.S., Palucci, A. (2019). Advances in the Analysis of Explosives. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_15

Download citation

Publish with us

Policies and ethics