Skip to main content

Advances in Analysis of Gunshot Residue

  • Chapter
  • First Online:

Abstract

Analysis of gunshot residue (GSR), produced by the discharge of a firearm, can assist in the association of a suspect with a crime and in the reconstruction of the sequence of events preceding the crime. The golden standard in the analysis of GSR is scanning electron microscope equipped with a detector for the X-ray emission (SEM/EDX). SEM/EDX allows automatic detection of particles containing heavy elements (such as GSR), imaging of particles detected and chemical analysis by EDX. Toxicological and environmental concerns led ammunition manufacturing towards products not containing Pb and other heavy metals. For SEM/EDX it is difficult to characterise the particles from lead-free ammunition and particles from heavy metal free (HMF) cartridges are impossible to be automatically detected. Possible new alternatives could be electron backscattered diffraction detectors (EBSD), ion beam analysis (IBA), time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman chemical maps, attenuated total reflectance (ATR) imaging and FTIR spectroscopy or, to a lesser extent due to lack of imaging capabilities, chromatography and mass spectrometry. The evaluation of the time since the last discharge is another interesting forensic problem associated to GSR, needing further research for routine application in casework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. UNODC (2014) Global study on homicide 2013

    Google Scholar 

  2. Heard BJ (2008) Handbook of firearms and ballistics. Wiley, Hoboken

    Book  Google Scholar 

  3. Wallace JS (2008) Chemical analysis of firearms, ammunition, and gunshot residue. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Haag MG, Haag LC (2008) Shooting incident reconstruction. Academic Press, San Diego

    Google Scholar 

  5. Cowan ME, Purdon PL (1967) A study of the paraffin test. J Forensic Sci 12:19–36

    CAS  PubMed  Google Scholar 

  6. Dillon JH (1990) The modified Griess test: a chemically specific chromatophoric test for nitrite compounds in gunshot residues. AFTE J 22(3):243–250

    Google Scholar 

  7. Dillon JH (1990) The sodium rhodizonate test: a chemically specific chromophoric test for lead in gunshot residues. AFTE J 22(3):251–256

    Google Scholar 

  8. Dillon JH (1990) A protocol for gunshot examination in muzzle to target distance determination. AFTE J 22(3):257–274

    Google Scholar 

  9. Zeichner A (2009) Shooting distance: estimation of. In: Jamieson A, Moenssens (eds) Wiley encyclopedia of forensic science, vol 1. Wiley, Chichester, pp 2351–2354

    Google Scholar 

  10. Firearms/GSR Working Group of the European Network of Forensic Science Institutes—ENFSI (2008) Gunshot residue analysis by scanning electron microscopy/energy—dispersive X-ray spectrometry

    Google Scholar 

  11. American Society for Testing and Materials—ASTM (2017) Standard practice for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectrometry. In: Annual Book of ASTM Standards. ASTM International, West Conshohocken

    Google Scholar 

  12. SWGGSR (2011) A guide for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectrometry. Technical report, National Institute of Justice, Washington

    Google Scholar 

  13. Romolo FS (2013) Chemistry, trace, firearm discharge residues: Overview, analysis, and interpretation. In: Siegel JA and Saukko PJ (eds) Encyclopedia of forensic sciences, 2nd edn, vol 2. Academic Press, Waltham, pp 195–201

    Google Scholar 

  14. Romolo FS, Stamouli A, Romeo M, Cook M, Orsenigo S, Donghi M (2017) An experimental study about the presence of selenium in inorganic gunshot residues (GSR). Forensic Chem 4:51–60

    Article  CAS  Google Scholar 

  15. Romolo FS, Margot P (2001) Identification of gunshot residue: a critical review. Forensic Sci Int 119:195–211

    Article  Google Scholar 

  16. Dalby O, Butler D, Birkett JW (2010) Analysis of gunshot residue and associated materials—a review. J Forensic Sci 55:924–943

    Article  PubMed  Google Scholar 

  17. Maitre M, Kirkbride KP, Horder M, Roux C, Beavis A (2017) Current perspectives in the interpretation of gunshot residues in forensic science: a review. Forensic Sci Int 270:1–11

    Google Scholar 

  18. Oommen Z, Pierce SM (2006) Lead-free primer residues: a qualitative characterization of Winchester WinClean™, Remington/UMC LeadLess™, Federal BallistiClean™, and Speer Lawman CleanFire™ handgun ammunition. J Forensic Sci 51(3):509–519

    Google Scholar 

  19. Brozek-Mucha Z (2014) On the prevalence of gunshot residue in selected populations—an empirical study performed with SEM-EDX analysis. Forensic Sci Int 237(2):46–52

    Article  CAS  PubMed  Google Scholar 

  20. Grima M, Butler M, Hanson R, Mohameden A (2012) Firework displays as sources of particles similar to gunshot residue. Sci Justice 52(1):49–57

    Google Scholar 

  21. Luten R, Neimke D, Barth M, Niewoehner L (2018) Investigating airborne GSR particles by the application of impactor technology. Forensic Chem 8:72–81

    Article  CAS  Google Scholar 

  22. Nunziata F, Morin M (2017) On the formation and on the surface of inorganic lead, barium and antimony based gunshot residues: a thermodynamic approach. J Forensic Sci Criminol 5(3):1–22

    Article  Google Scholar 

  23. French J, Morgan R, Davy J (2014) The secondary transfer of gunshot residue: an experimental investigation carried out with SEM-EDX analysis. X-Ray Spectrom 43:56–61

    Article  CAS  Google Scholar 

  24. Blakey LS, Sharples GP, Chana K, Birkett JW (2018) Fate and behavior of gunshot residue: a review. J Forensic Sci 63:9–19

    Google Scholar 

  25. Biedermann A, Bozza S, Taroni F (2009) Probabilistic evidential assessment of gunshot residue particle evidence (Part I): likelihood ratio calculation and case pre-assessment using Bayesian networks. Forensic Sci Int 191(1):24–35

    Article  CAS  PubMed  Google Scholar 

  26. Biedermann A, Bozza S, Taroni F (2011) Probabilistic evidential assessment of gunshot residue particle evidence (Part II): Bayesian parameter estimation for experimental count data. Forensic Sci Int 206(1):103–110

    Article  CAS  PubMed  Google Scholar 

  27. Gauriot R, Gunaratnam L, Moroni R, Reinikainen T, Corander R (2013) Statistical challenges in the quantification of gunshot residue evidence. J Forensic Sci 58(5):1149–1155

    Article  PubMed  Google Scholar 

  28. Gallidabino M, Biedermann A, Taroni F (2015) Commentary on: Gauriot R, Gunaratnam L, Moroni R, Reinikainen T, Corander R. Statistical challenges in the quantification of gunshot residue evidence. J Forensic Sci (2013) 58(5):1149–1155. J Forensic Sci 60(2):539–541

    Google Scholar 

  29. Kaplan Damary N, Mandely M, Levin N, Izraeli E (2016) Calculation of likelihood ratios for gunshot residue evidence—statistical aspects. Law Probab Risk 15:107–125

    Google Scholar 

  30. Molina DK, Martinez M, Garcia J, DiMaio V (2007) Gunshot residue testing in suicides Part I: analysis by scanning electron microscopy with energy dispersive X-ray. Am J Forensic Med Pathol 28(3):187–190

    Article  PubMed  Google Scholar 

  31. Molina DK, Martinez M, Garcia J, DiMaio V (2007) Gunshot residue testing in suicides: Part II: analysis by inductive coupled plasma-atomic emission spectrometry. Am J Forensic Med Pathol 28(3):191–194

    Article  PubMed  Google Scholar 

  32. Sen P, Panigrahi N, Rao MS, Carier KM, Sen S, Meha GK (1982) Application of proton-induced X-ray emission technique to gunshot residue analyses. J Forensic Sci 27:330–339

    Article  CAS  PubMed  Google Scholar 

  33. Niewohner L, Wenz HW (1999) Applications of focused ion beam systems in gunshot residue investigation. J Forensic Sci 44:105–109

    Article  CAS  PubMed  Google Scholar 

  34. Bailey MJ, Kirkby KJ, Jeynes C (2009) Trace element profiling of gunshot residues by PIXE and SEM-EDX: a feasibility study. X-Ray Spectrom 38:190–194

    Article  CAS  Google Scholar 

  35. Bailey MJ, Jeynes C (2009) Characterisation of gunshot residue particles using self-consistent ion beam analysis. Nucl Instrum Methods Phys Res, Sect B 267:2265–2268

    Article  CAS  Google Scholar 

  36. Romolo FS, Christopher ME, Donghi M, Ripani L, Jeynes C, Webb RP, Ward NI (2013) Integrated ion beam analysis (IBA) in gunshot residue (GSR) characterisation. Forensic Sci Int 231:219–228

    Article  CAS  PubMed  Google Scholar 

  37. Christopher M, Warmenhoven J, Romolo FS, Donghi M, Webb R, Jeynes C, Ward NI (2013) A new quantitative method for gunshot residue analysis by ion beam analysis. Analyst 138:4649–4655

    Article  CAS  PubMed  Google Scholar 

  38. Rijnders MR, Stamouli A, Bolck A (2010) Comparison of GSR composition occurring at different locations around the firing position. J Forensic Sci 55:616–623

    Article  PubMed  Google Scholar 

  39. Duarte A, Silva LM, de Souza CT, Stori EM, Boufleur LA, Amaral L, Dias JF (2015) Elemental quantification of large gunshot residues. Nucl Instrum Methods Phys Res, Sect B 348:170–173

    Article  CAS  Google Scholar 

  40. Duarte A, Silva LM, de Souza CT, Stori EM, Niekraszewicz LAB, Amarala L, Dias JF (2018) Characterization of Brazilian ammunitions and their respective gunshot residues with ion beam techniques. Forensic Chem 7:94–102

    Article  CAS  Google Scholar 

  41. Tassa M, Leist Y, Steinberg M (1982) Characterization of gunshot residues by X-ray diffraction. J Forensic Sci 27:677–683

    CAS  Google Scholar 

  42. Melo LG, Martiny A, Pinto AL (2014) Nano characterization of gunshot residues from Brazilian ammunition. Forensic Sci Int 240:69–79

    Article  PubMed  Google Scholar 

  43. Bauer F, Hiscock M, Lang C (2016) Advances in the analysis of gunshot residue and other trace evidence using EDX and EBSD in the SEM. Microsc Microanal 22:2046–2047

    Article  Google Scholar 

  44. Toal SJ, Niemeyerb WD, Contea S, Montgomerya DD, Ericksen GS (2014) Confirmatory analysis of field-presumptive GSR test sample using SEM/EDX. Scanning Microscopies, Proc SPIE 9236:1–6

    Google Scholar 

  45. Brazeau J, Wong RK (1997) Analysis of gunshot residues on human tissues and clothing by X-ray microfluorescence. J Forensic Sci 42:424–428

    Article  CAS  PubMed  Google Scholar 

  46. Flynn J, Stoilovic M, Lennard C, Prior I, Kobus H (1998) Evaluation of X-ray microfluorescence spectrometry for the elemental analysis of firearm discharge residues. Forensic Sci Int 97:21–36

    Article  CAS  Google Scholar 

  47. Berendes A, Neimke D, Schumacher R, Barth M (2006) A versatile technique for the investigation of gunshot residue patterns on fabrics and other surfaces: m-XRF. J Forensic Sci 51:1085–1090

    Article  CAS  PubMed  Google Scholar 

  48. Coumbaros J, Kirkbride KP, G. Klass G, Skinner W (2001) Characterisation of 0.22 caliber rimfire gunshot residues by time-of-flight secondary ion mass spectrometry (TOF-SIMS): a preliminary study. Forensic Sci Int 119:72–81

    Google Scholar 

  49. Mahoney CM, Gillen G, Fahey AJ (2006) Characterization of gunpowder samples using time-offlight secondary ion mass spectrometry (TOF-SIMS). Forensic Sci Int 158(1):39–51

    Article  CAS  PubMed  Google Scholar 

  50. Szynkowska MI, Parczewski A, Szajdak K, Rogowski J (2013) Examination of gunshot residues transfer using ToF-SIMS. Surf Interface Anal 45(1):596–600

    Article  CAS  Google Scholar 

  51. Gassner AL, Weyermann C (2016) LC–MS method development and comparison of sampling materials for the analysis of organic gunshot residues. Forensic Sci Int 264:47–55

    Article  CAS  PubMed  Google Scholar 

  52. Taudte RV, Roux C, Blanes L, Horder M, Kirkbride KP, Beavis A (2016) The development and comparison of collection techniques for inorganic and organic gunshot residues. Anal Bioanal Chem 408:2567–2576

    Article  CAS  PubMed  Google Scholar 

  53. Song-im N, Benson S, Lennard C (2012) Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci Int 222:102–110

    Article  CAS  PubMed  Google Scholar 

  54. Wallace JS, McKeown WJ (1993) Sampling procedures for firearms and/or explosives residues. J Forensic Sci Soc 33:107–116

    Article  Google Scholar 

  55. Speers SJ, Doolan K, McQuillan J, Wallace JS (1994) Evaluation of improved methods for the recovery and detection of organic and inorganic cartridge discharge residues. J Chromatogr A 674:319–327

    Article  CAS  Google Scholar 

  56. Stevens B, Bell S, Adams K (2016) Initial evaluation of inlet thermal desorption GC–MS analysis for organic gunshot residue collected from the hands of known shooters. Forensic Chem 2:55–62

    Google Scholar 

  57. Douse JMF (1982) Trace analysis of explosives in handswab extracts using amberlite XAD-7 porous polymer beads, silica capillary column gas chromatography with electron-capture detection and thin-layer chromatography. J Chromatogr 234:415–425

    Article  CAS  Google Scholar 

  58. Twibell JD, Wright T, Sanger DG, Bramley RK, Lloyd JBF, Downs NS (1984) The efficient extraction of some common organic explosives from hand swabs for analysis by gas liquid and thin-layer chromatography. J Forensic Sci 29:277–283

    CAS  Google Scholar 

  59. Northrop DM, Martire DE, MacCrehan WA (1991) Separation and identification of organic gunshot and explosive constituents by micellar electrokinetic capillary electrophoresis. Anal Chem 63:1038–1042

    Article  CAS  Google Scholar 

  60. Northrop DM, Mac Crehan WA (1992) Sample collection, preparation, and quantitation in the micellar electrokinetic capillary electrophoresis of gunshot residues. J Liquid Chromatography 15:1041–1062

    Article  CAS  Google Scholar 

  61. MacCrehan WA, Smith KD, Rowe WF (1998) Sampling protocols for the detection of smokeless powder residues using capillary electrophoresis. J Forensic Sci 43:119–124

    Article  CAS  PubMed  Google Scholar 

  62. Northrop DM (2001) Gunshot residue analysis by micellar electrokinetic capillary electrophoresis: assessment for application to casework. Part I. J Forensic Sci 2001 46:549–559

    Google Scholar 

  63. Northrop DM (2001) Gunshot residue analysis by micellar electrokinetic capillary electrophoresis: Assessment for application to casework. Part II. J Forensic Sci 46:560–572

    CAS  Google Scholar 

  64. Reardon MR, MacCrehan WA (2001) Developing a quantitative extraction technique for determining the organic additives in smokeless handgun powder. J Forensic Sci 46:802–807

    Article  CAS  PubMed  Google Scholar 

  65. MacCrehan WA, Reardon MR, Duewer DL (2002) Associating gunpowder and residues from commercial ammunition using compositional analysis. J Forensic Sci 47:260–266

    CAS  PubMed  Google Scholar 

  66. MacCrehan WA, Layman MJ, Secl JD (2003) Hair combing to collect organic gunshot residues (OGSR). Forensic Sci Int 135:167–173

    Article  CAS  PubMed  Google Scholar 

  67. Morales EB, Vazquez AL (2004) Simultaneous determination of inorganic and organic gunshot residues by capillary electrophoresis. J Chromatogr A 1061:225–233

    Article  CAS  PubMed  Google Scholar 

  68. Thompson R, Fetterolf D, Miller M, Mothershead R (1999) Aqueous recovery from cotton swabs of organic explosives residue followed by solid phase extraction. J Forensic Sci 44:795–804

    Article  CAS  Google Scholar 

  69. Perret D, Marchese S, Gentili A, Curini R, Romolo FS (2008) LC-MS-MS determination of stabilizers and explosives residues in hand-swabs. Chromatographia 68:517–524

    Article  CAS  Google Scholar 

  70. Tong Y, Wu Z, Yang C, Yu J, Zhang X, Yang S, Deng X, Xu Y, Wen Y (2001) Determination of diphenylamine stabilizer and its nitrated derivatives in smokeless gunpowder using a tandem MS method. Analyst 126:480–484

    Article  CAS  PubMed  Google Scholar 

  71. Wu Z, Tong Y, Yu J, Zhang X, Pan C, Deng X, Xu Y, Wen Y (1999) Detection of N, N′-diphenyl-N, N′-dimethylurea (methyl centralite) in gunshot residues using MS-MS method. Analyst 124:1563–1567

    Article  CAS  Google Scholar 

  72. Wu Z, Tong Y, Yu J, Zhang X, Yang C, Pan C, Deng X, Wen Y, Xu Y (2001) The utilization of MS-MS method in detection of GSRs. J Forensic Sci 46:495–501

    CAS  Google Scholar 

  73. Laza D, Nys B, Kinder JD, Kirsch-De Mesmaeker A, Moucheron C (2007) Development of a quantitative LC-MS/MS method for the analysis of common propellant powder stabilizers in gunshot residue. J Forensic Sci 52:842–850

    Article  CAS  PubMed  Google Scholar 

  74. DeTata D, Collins P, McKinley A (2013) A fast liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) method for the identification of organic explosives and propellants. Forensic Sci Int 233:63–74

    Article  CAS  PubMed  Google Scholar 

  75. West C, Baron G, Minet JJ (2007) Detection of gunpowder stabilizers with ion mobility spectrometry. Forensic Sci Int 166:91–101

    Article  CAS  PubMed  Google Scholar 

  76. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  CAS  PubMed  Google Scholar 

  77. Takáts Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrometry 40:1261–1275

    Article  CAS  Google Scholar 

  78. Zhao MX, Zhang SC, Yang CD, Xu YC, Wen YX, Sun LS, Zhang XR (2008) Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J Forensic Sci 53:807–811

    Google Scholar 

  79. Morelato M, Beavis A, Ogle A, Doble P, Kirkbride P, Roux C (2012) Screening of gunshot residues using desorption electrospray ionisation-mass spectrometry (DESI-MS). Forensic Sci Int 217:101–106

    Article  CAS  PubMed  Google Scholar 

  80. Morelato M, Beavis A, Kirkbride P, Roux C (2013) Forensic applications of desorption electrospray ionisation mass spectrometry. Forensic Sci Int 226:10–21

    Article  CAS  PubMed  Google Scholar 

  81. Abrego Z, Ugarte A, Unceta N, Fernández-Isla A, Goicolea MA, Barrio RJ (2012) Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry. Anal Chem 84:2402–2409

    Article  CAS  PubMed  Google Scholar 

  82. López-López M, Delgado JJ, García-Ruiz C (2013) Analysis of macroscopic gunshot residues by Raman spectroscopy to assess the weapon memory effect. Forensic Sci Int 231:1–5

    Article  CAS  PubMed  Google Scholar 

  83. Bueno J, Lednev I (2014) Raman microspectroscopic chemical mapping and chemometric classification for the identification of gunshot residue on adhesive tape. Anal Bioanal Chem 406(19):4595–4599

    Article  CAS  PubMed  Google Scholar 

  84. Bueno J, Sikirzhytski V, Lednev IK (2013) Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal Chem 85:7287–7294

    Article  CAS  PubMed  Google Scholar 

  85. Bueno J, Lednev IK (2014) Attenuated total reflectance-FT-IR imaging for rapid and automated detection of gunshot residue. Anal Chem 86(7):3389–3396

    Article  CAS  PubMed  Google Scholar 

  86. Bueno J, Lednev IK (2013) Advanced statistical analysis and discrimination of gunshot residue implementing combined Raman and FT-IR data. Anal Methods 5:6292–6296

    Google Scholar 

  87. Andrasko J, Norberg T, Stahling S (1998) Time since discharge of shotguns. J Forensic Sci 43:1005–1015

    Google Scholar 

  88. Andrasko J, Stahling S (2000) Time since discharge of rifles. J Forensic Sci 45:1250–1255

    Article  CAS  PubMed  Google Scholar 

  89. Andrasko J, Stahling S (1999) Time since discharge of spent cartridges. J Forensic Sci 44:487–495

    Article  Google Scholar 

  90. Andrasko J, Stahling S (2003) Time since discharge of pistols and revolvers. J Forensic Sci 48:307–311

    Article  CAS  PubMed  Google Scholar 

  91. Andersson C, Andrasko J (1999) A novel application of time since the latest discharge of a shotgun in a suspect murder. J Forensic Sci 44:211–213

    Google Scholar 

  92. Wilson JD, Tebow JD, Moline KW (2003) Time since discharge of shotgun shells. J Forensic Sci 48:1298–1301

    Google Scholar 

  93. Persin B, Touron P, Mille F, Bernier G, Subercazes T (2007) Évaluation de la date d’un tir. Canadian Soc Forensic Sci J 40:65–85

    Article  CAS  Google Scholar 

  94. Weyermann C, Belaud V, Riva F, Romolo FS (2009) Analysis of organic volatile residues in 9 mm spent cartridges. Forensic Sci Int 186:29–35

    Article  CAS  PubMed  Google Scholar 

  95. Chang KH, Yew CH, Abdullah AFL (2015) Study of the behaviors of gunshot residues from spent cartridges by headspace solid-phase microextraction–gas chromatographic techniques. J Forensic Sci 60:869–877

    Article  CAS  PubMed  Google Scholar 

  96. Gallidabino M, Weyermann C (2016) Commentary on: Chang KH, Yew CH, Abdullah AFL (2015) Study on the behaviors of gunshot residues from spent cartridges by headspace solid-phase microextraction-gas chromatographic techniques. J Forensic Sci 60(4):869–877. J Forensic Sci 61:1409–1410

    Google Scholar 

  97. Gallidabino M, Romolo FS, Bylenga K, Weyermann C (2014) Development of a novel headspace sorptive extraction method to study the aging of volatile compounds in spent handgun cartridges. Anal Chem 86:4471–4478

    Google Scholar 

  98. Gallidabino M, Romolo FS, Weyermann C (2015) Characterization of volatile organic gunshot residues in fired handgun cartridges by headspace sorptive extraction. Anal Bioanal Chem 407:7123–7134

    Article  CAS  PubMed  Google Scholar 

  99. Gallidabino M, Romolo FS, Weyermann C (2017) Time since discharge of 9 mm cartridges by headspace analysis, Part 1: comprehensive optimization and validation of a headspace sorptive extraction (HSSE) method. Forensic Sci Int 272:159–170

    Article  CAS  PubMed  Google Scholar 

  100. Gallidabino M, Romolo FS, Weyermann C (2017) Time since discharge of 9 mm cartridges by head space analysis, Part 2: aging study and estimation of the time since discharge using multivariate regression. Forensic Sci Int 272:171–183

    Article  CAS  PubMed  Google Scholar 

  101. Taudte RV, Beavis A, Blanes L, Cole N, Doble P, Roux C (2014) Detection of gunshot residues using mass spectrometry. Biomed Res Int 965403:1–16

    Article  Google Scholar 

  102. Meng H, Caddy B (1997) Gunshot residue analysis—a review. J Forensic Sci 42:553–570

    Article  CAS  Google Scholar 

  103. Charles S, Nys B, Geusens N (2011) Primer composition and memory effect of weapons—some trends from a systematic approach in casework. Forensic Sci Int 212:22–26

    Article  PubMed  Google Scholar 

  104. Brożek-Mucha Z (2014) On the prevalence of gunshot residue in selected populations—an empirical study performed with SEM-EDX analysis. Forensic Sci Int 237:46–52

    Article  CAS  PubMed  Google Scholar 

  105. Hannigan TJ, McDermott SD, Greaney CM, O’Shaughnessy J, O’Brien CM (2015) Evaluation of gunshot residue (GSR) evidence: surveys of prevalence of GSR on clothing and frequency of residue types. Forensic Sci Int 257:177–181

    Article  CAS  PubMed  Google Scholar 

  106. Charles S, Geusens N (2012) A study of the potential risk of gunshot residue transfer from special units of the police to arrested suspects. Forensic Sci Int 216:78–81

    Article  PubMed  Google Scholar 

  107. Blakey LS, Sharples GP, Chana K, Birkett JW (2018) Fate and behavior of gunshot residue—a review. J Forensic Sci 63:9–19

    Article  PubMed  Google Scholar 

  108. Bell S, Seitzinger L (2016) From binary presumptive assays to probabilistic assessments: differentiation of shooters from non-shooters using IMS, OGSR, neural networks, and likelihood ratios. Forensic Sci Int 263:176–185

    Article  PubMed  Google Scholar 

  109. Gallidabino M, Weyermann C, Romolo FS, Taroni F (2013) Estimating the time since discharge of spent cartridges: a logical approach for interpreting the evidence. Sci Justice 53:41–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Saverio Romolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romolo, F.S. (2019). Advances in Analysis of Gunshot Residue. In: Francese, S. (eds) Emerging Technologies for the Analysis of Forensic Traces. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-20542-3_13

Download citation

Publish with us

Policies and ethics