Advertisement

Fractional Derivatives

  • Edmundo Capelas de OliveiraEmail author
Chapter
  • 484 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 240)

Abstract

From the end of the last decade of the twentieth century and the beginning of the first decade of the twenty-first century there was a great proliferation of derivatives, always with the purpose of generalizing the classics derivative from the calculus of integer order. Many, although containing the fractional name, are only a multiplicative factor ahead of the derivative of order one, as well as others, proposing as kernel a nonsingular function.

References

  1. 1.
    Capelas de Oliveira, E., Tenreiro Machado, J.A.: A review of definitions for fractional derivatives and integrals. Math. Prob. Ing. 2014, ID 238459 (2014)Google Scholar
  2. 2.
    Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat. 44, 460–481 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sousa, J.V.C., Capelas de Oliveira, E.: On the \(\uppsi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 60, 72–91 (2018)Google Scholar
  4. 4.
    Sonin, N.Y.: On differentiation with arbitrary index. Moscou Mat. Sb. 6, 1–38 (1869)Google Scholar
  5. 5.
    Grünwald, A.K.: Derivationen und deren Anwendung. Z. Angew. Math. Phys. 12, 441–480 (1867)Google Scholar
  6. 6.
    Letnikov, A.V.: Theory of differentiation with an arbitrary index. Matem. Sbornik. 3, 1–66 (1868)Google Scholar
  7. 7.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integral and Series (Elementary Functions). Gordon and Breach Science Publishers, London (1986)zbMATHGoogle Scholar
  8. 8.
    Tricomi, F.G., Erdélyi, A.: The asymptotic expansion of a ratio of gamma functions. Pacific J. Math. 1, 133–142 (1951)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Love, E.R.: Changing the order of integration. J. Austral. Math. Soc. 9, 421–432 (1970)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  11. 11.
    Samko, S.G., Kilbas, A.A., Marichev, O.E.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)zbMATHGoogle Scholar
  12. 12.
    Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent—II. Geophys. J. Roy. Astron. Soc. 13, 529–539 (1967). Reprinted in Fract. Cal. Appl. Anal. 11, 4–14 (2008)Google Scholar
  13. 13.
    Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1, 161–198 (1971). Reprinted in Fract. Cal. Appl. Anal. 10, 309-324 (2007)CrossRefGoogle Scholar
  14. 14.
    Dzhrbashian, M. M., Nersesyan, A. B.: Fractional derivatives and the Cauchy problem for fractional differential equations. Izv. Akad. Nauk. Armyan 3, 3–29 (1968) (in Russian)Google Scholar
  15. 15.
    Davis, H.T.: The Theory of Linear Operators. The Principia Press, Bloomington (1936)Google Scholar
  16. 16.
    Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)zbMATHGoogle Scholar
  17. 17.
    Rubanraj, S., Jernith, S.S.: Fractional calculus of logarithmic functions. Int. J. Math. Comp. Research. 4, 1296–1303 (2016)Google Scholar
  18. 18.
    Debnath, L., Bhatta, D.: Integral Transform and Their Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  19. 19.
    Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)CrossRefGoogle Scholar
  20. 20.
    Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: The Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  21. 21.
    Podlubny, I.: Fractional Differential Equations. Mathematical in Sciences and Engineering, vol. 198. Academic Press, San Diego (1999)Google Scholar
  22. 22.
    Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Sta. Sol. B. 133, 425–430 (1986)CrossRefGoogle Scholar
  23. 23.
    Mathai, A.M., Saxena, R.K., Haubold, H.J.: The \(H\)-Function: Theory and Applications. Springer, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations