Advertisement

Mittag-Leffler Functions

  • Edmundo Capelas de OliveiraEmail author
Chapter
  • 463 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 240)

Abstract

In the previous chapter, we presented the classic hypergeometric functions that constitute the functions associated with the integer order calculus, in particular, a generalization of the factorial concept by the gamma function. In a similar way, we can understand why fractional calculus is an important tool for refining the description of many natural phenomena, particularly those with temporal dependence, where the called memory effect becomes present, from the understanding of form that the functions related to it generalize the functions relative to the integer order calculus.

References

  1. 1.
    Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_{\alpha }(x)\). C. R. Acad. Sci. Paris 137, 554–558 (1903)zbMATHGoogle Scholar
  2. 2.
    Sales Teodoro, G.: Fractional Calculus and the Mittag-Leffler Functions. Master Thesis, Imecc-Unicamp, Campinas (2014). (in Portuguese)Google Scholar
  3. 3.
    Sales Teodoro, G., Capelas de Oliveira, E.: Laplace transform and the Mittag-Leffler function. Int. J. Math. Educ. Sci. Technol. 45, 595–604 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agarwal, R.P.: A propos d’une note de M. Pierre Humbert. C. R. Acad. Sci. Paris 236, 2031–2032 (1953)Google Scholar
  5. 5.
    Prabhakar, T.R.: A singular integral equation with generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Figueiredo Camargo, R., Capelas de Oliveira, E.: Fractional Calculus. Editora Livraria da Física, São Paulo (2015). (in Portuguese)Google Scholar
  7. 7.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  8. 8.
    Rabotnov, Y.N.: Creep Problems in Structural Members. North-Holland, Amsterdam (1969)zbMATHGoogle Scholar
  9. 9.
    Erdélyi, A. (ed.): Higher Tanscendental Functions, vol. 3. McGraw-Hill, New York (1955)Google Scholar
  10. 10.
    Wright, E.M.: On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 8, 71–79 (1933)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Podlubny, I.: Fractional Differential Equations. Mathematical in Sciences and Engineering, vol. 1, p. 98. Academic Press, San Diego (1999)Google Scholar
  12. 12.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models. Imperial College, London (2010)Google Scholar
  13. 13.
    Mainardi, F., Pagnini, G.: Space-time fractional diffusion: exact solutions and probability interpretation. In: Proceedings WASCOM-2001. World Scientific, Singapore (2002)Google Scholar
  14. 14.
    Mainardi, F., Pagnini, G.: The fundamental solutions of the time-fractional diffusion equation. In: Fabrizio, M., Lazzari, B., Morro, A. (eds.) Mathematical Models and Methods for Smart Material, vol. 62, pp. 207–224 (2002)Google Scholar
  15. 15.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1972)zbMATHGoogle Scholar
  16. 16.
    Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler functions and integral operator associated with fractional calculus. J. Fract. Cal. Appl. 3, 1–13 (2012)Google Scholar
  17. 17.
    Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Capelas de Oliveira, E.: Special Functions and Applications, 2nd edn. Livraria Editora da Física, São Paulo (2012). (in Portuguese)Google Scholar
  19. 19.
    Khan, M.A., Ahmed, S.: On some properties of fractional calculus operators associated with generalized Mittag-Leffler functions. Thai J. Math. 11, 645–654 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bansal, D., Orhan, H.: Partial sums of Mittag-Leffler functions. J. Math. Ineq. 13, 423–431 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations