A Bit of History
Chapter
First Online:
- 447 Downloads
Abstract
The purpose of this chapter is to sketch in chronological order the development of the fractional calculus, from its origins until recent times.
References
- 1.Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College, London (2010)Google Scholar
- 2.Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos. 6, 505–513 (1996)MathSciNetCrossRefGoogle Scholar
- 3.Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Frac. Differ. Appl. 2, 73–85 (2015)Google Scholar
- 4.Katugampola, U.N.: Correction to “what is a fractional derivative?” by Ortigueira and Machado [J. Comp. Phys. 293, 4–13 (2015), Special issue on Fractional PDEs]. J. Comp. Phys. 321, 1255–1257 (2016)Google Scholar
- 5.Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comp. Phys. 293, 4–13 (2015)MathSciNetCrossRefGoogle Scholar
- 6.Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 30, 1–4 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Iyiola, O.S., Nwaeze, E.R.: Some new results on the new conformable fractional calculus with application using D’Alembert approach. Progr. Frac. Diff. Appl. 2, 115–122 (2016)CrossRefGoogle Scholar
- 8.Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model (2016). arXiv:1602.03408v1 [math.GM]
- 9.Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat. 44, 460–481 (2017)MathSciNetCrossRefGoogle Scholar
- 10.Mathai, A.M., Haubold, H.J.: Matrix Methods and Fractional Calculus. World Scientific, New Jersey (2017)Google Scholar
- 11.Tenreiro Machado, J.A., Kiryakova, V.: Historical survey: the chronicles of fractional calculus 20, 307–336 (2017)Google Scholar
- 12.Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)MathSciNetCrossRefGoogle Scholar
- 13.Oliveira, D.S., Capelas de Oliveira, E.: Hilfer-Katugampola fractional derivative (online). Comp. Appl. Math. 1–19 (2017)Google Scholar
- 14.Oliveira, D.S., Capelas de Oliveira, E.: On the generalized \((k,\rho )\)-fractional derivative. Progr. Fract. Differ. Appl. 2, 133–145 (2018)CrossRefGoogle Scholar
- 15.Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A., Alshomrani, A.S., Alghamdi, S.S.: Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)CrossRefGoogle Scholar
- 16.Yan, Y., Sun, Z.-Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)MathSciNetCrossRefGoogle Scholar
- 17.Kaplan, M., Bekir, A.: Construction of exact solutions to the space-time fractional differential equations via new approach. Optik 132, 1–8 (2017)CrossRefGoogle Scholar
- 18.Yang, X.-J., Tenreiro Machado, J.A.: A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A Stat. Mech. Appl. 481, 276–283 (2017)MathSciNetCrossRefGoogle Scholar
- 19.Sousa, J.V.C., Capelas de Oliveira, E.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simulat. 60, 72–91 (2018)Google Scholar
- 20.Kaplan, M., Akbulut, A.: Application of two different algorithms to the approximate long water wave equation with conformable fractional derivative. Arab. J. Basic Appl. Sci. 25, 77–84 (2018)CrossRefGoogle Scholar
- 21.Rogosin, S., Dubatovskaya, M.: Letnikov vs. Marchaud: A survey on two prominent constructions of fractional derivatives. Mathematics 6, 3 (2018). https://doi.org/10.3390/math6010003MathSciNetCrossRefGoogle Scholar
- 22.Liang, X., Gao, F., Zhou, C-B., Wang, Z., Yang, X-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Diff. Equat. Open Acess (2018)Google Scholar
- 23.Ferrari, F.: Weyl and Marchaud derivatives: a forgotten history. Mathematics 6, 6 (2018). https://doi.org/10.3390/math6010006CrossRefGoogle Scholar
- 24.Evangelista, L.R., Lenzi, E.K.: Fractional diffusion equations and anomalous diffusion. Cambridge University Press, Cambridge (2018)Google Scholar
- 25.Ortigueira, M.D., Tenreiro Machado, J.A.: On fractional vectorial calculus. Bull. Pol. Ac. Tec. 66, 399–402 (2018)Google Scholar
- 26.Yang, X.-J., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2018)MathSciNetCrossRefGoogle Scholar
- 27.Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A Stat. Mech. Appl. 500, 40–49 (2018)MathSciNetCrossRefGoogle Scholar
- 28.Cuahutenango-Barro, B., Taneco-Hernández, M.A., Gómez-Aguilar, J.F.: The fractional-time wave equation via Atangana-Baleanu fractional derivative. Chaos, Solitons and Fractals 115, 283–299 (2018)Google Scholar
- 29.Andrade, A.M.F., Lima,E.G., Dartora, C.A.: An Introduction to fractional calculus and its applications in electric circuit. Rev. Bras. Ens. Fis. 40, e3314 (2018)Google Scholar
- 30.Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)CrossRefGoogle Scholar
- 31.Akman, T., Yildiz, B., Baleanu, D.: New discretization of Caputo-Fabrizio derivative. Comput. Appl. Math. 37, 3307–3333 (2018)MathSciNetCrossRefGoogle Scholar
- 32.Ortigueira, M.D., Valério, D., Tenreiro Machado, J.A.: Variable order fractional systems. Commun. Nonlinear Sci. Num. Simulat. 71, 231–243 (2019)MathSciNetCrossRefGoogle Scholar
- 33.Zhao, D., Luo, M.: Representations of acting processes and memory effects; general fractional derivative and its applications to theory of heat condition with finite wave speeds. Appl. Math. Comp. 346, 531–544 (2019)CrossRefGoogle Scholar
- 34.Capelas de Oliveira, E., Vaz Jr, J., Jarosz, S.: Fractional calculus via Laplace transform and its application in relaxation processes. Commun. Nonlinear Sci. Numer. Simulat. 69, 58–72 (2019)MathSciNetCrossRefGoogle Scholar
- 35.Sales Teodoro, G., Tenreiro Machado, J.A., Capelas de Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019