Skip to main content

Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11506))

Included in the following conference series:

Abstract

In this paper, we introduce a deep learning approach, based on feed-forward neural networks, for big data time series forecasting with arbitrary prediction horizons. We firstly propose a random search to tune the multiple hyper-parameters involved in the method performance. There is a twofold objective for this search: firstly, to improve the forecasts and, secondly, to decrease the learning time. Next, we propose a procedure based on moving averages to smooth the predictions obtained by the different models considered for each value of the prediction horizon. We conduct a comprehensive evaluation using a real-world dataset composed of electricity consumption in Spain, evaluating accuracy and comparing the performance of the proposed deep learning with a grid search and a random search without applying smoothing. Reported results show that a random search produces competitive accuracy results generating a smaller number of models, and the smoothing process reduces the forecasting error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11, pp. 2546–2554. Curran Associates Inc., New York (2011)

    Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Candel, A., LeDell, E., Parmar, V., Arora, A.: Deep learning with H2O. H2O.ai, Inc., California (2017)

    Google Scholar 

  4. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-ahead time series prediction. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_89

    Chapter  Google Scholar 

  5. Dalto, M., Matusko, J., Vasak, M.: Deep neural networks for ultra-short-term wind forecasting. In: Proceedings of the IEEE International Conference on Industrial Technology (ICIT), pp. 1657–1663 (2015)

    Google Scholar 

  6. Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H.: An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61(4/5), 9:1–9:11 (2017)

    Article  Google Scholar 

  7. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2327–2334 (2015)

    Google Scholar 

  8. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  9. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian optimization of machine learning hyperparameters on large datasets. CoRR abs/1605.07079 (2016)

    Google Scholar 

  10. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. Int. 23, 22408–22417 (2016)

    Article  Google Scholar 

  11. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. arXiv preprint arXiv:1604.07269 (2016)

  12. Manolakis, D.G., Ingle, V.K.: Applied Digital Signal Processing. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  13. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/. ISBN 3-900051-07-0

  14. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016)

    Google Scholar 

  15. Torres, J., Galicia, A., Troncoso, A., Martínez-Álvarez, F.: A scalable approach based on deep learning for big data time series forecasting. Integr. Comput.-Aid. E. 25(4), 335–348 (2018)

    Article  Google Scholar 

  16. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, p. 4. ACM, New York (2015)

    Google Scholar 

  17. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., et al.: Apache spark: a unified engine for big data processing. Communications of the ACM 59(11), 56–65 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under the project TIN2017-88209-C2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. F. Torres or A. Troncoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres, J.F., Gutiérrez-Avilés, D., Troncoso, A., Martínez-Álvarez, F. (2019). Random Hyper-parameter Search-Based Deep Neural Network for Power Consumption Forecasting. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20521-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20520-1

  • Online ISBN: 978-3-030-20521-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics