Skip to main content

Use of Complex Networks for the Automatic Detection and the Diagnosis of Alzheimer’s Disease

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11506))

Included in the following conference series:

Abstract

Alzheimer’s disease (AD) is classified as a chronic neurological disorder of the brain and affects approximately 25 million elderly individuals worldwide. This disorder leads to a reduction in people’s productivity and imposes restrictions on their daily lives. Studies of AD often rely on electroencephalogram (EEG) signals to provide information on the behavior of the brain. Recently, a map from a time series to a network has been proposed and that is based on the concept of transition probabilities; the series results in a so-called “quantile graph” (QG). Here, this map, which is also called the QG method, is applied for the automatic detection of healthy patients and patients with AD from recorded EEG signals. Our main goal is to illustrate how the differences in dynamics in the EEG signals are reflected in the topology of the corresponding QGs. Based on various network metrics, namely, the clustering coefficient, the mean jump length and the betweenness centrality, our results show that the QG method can be used as an effective tool for automated diagnosis of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, U.R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Comput. Meth. Programs Biomed. 80, 37–45 (2005)

    Article  Google Scholar 

  2. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease: models of computation and analysis of EEGs. Clin. EEG Neurosci. 36(3), 131–140 (2005)

    Article  Google Scholar 

  3. Alotaiby, T.N., Alshebeili, S.A., Alshawi, T., Ahmad, I., El-samie, F.E.A.: EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process, p. 183 (2014)

    Google Scholar 

  4. Besthorn, C., et al.: Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr. Clin. Neurophysiol. 103(2), 241–248 (1997)

    Article  Google Scholar 

  5. Budson, A., Solomon, P.: Memory Loss, Alzheimer’s Disease, and Dementia. Elsevier, New York (2015)

    Google Scholar 

  6. Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Automated EEG signals analysis using quantile graphs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 95–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_9

    Chapter  Google Scholar 

  7. Campanharo, A.S.L.O., Doescher, E., Ramos, F.M.: Application of quantile graphs to the automated analysis of EEG signals. Neural Process. Lett., 1–16 (2018)

    Google Scholar 

  8. Campanharo, A.S.L.O., Ramos, F.M.: Distinguishing different dynamics in electroencephalographic time series through a complex network approach. In: Proceeding Series of the Brazilian Society of Applied and Computational Mathematics. vol. 5. SBMAC (2017)

    Google Scholar 

  9. Campanharo, A.S.L.O., Ramos, F.M.: Hurst exponent estimation of self-affine time series using quantile graphs. Physica A 444, 43–48 (2016)

    Article  Google Scholar 

  10. Campanharo, A.S.L.O., Sirer, M.I., Malmgren, R.D., Ramos, F.M., Amaral, L.A.N.: Duality between time series and networks. PLoS ONE 6, e23378 (2011)

    Article  Google Scholar 

  11. Costa, L.F., Rodrigues, F.A., Travieso, G., Villas, P.R.: Characterization of complex networks. Adv. Phys. 56, 167–242 (2007)

    Article  Google Scholar 

  12. Feldman, H.H., Woodward, M.: The staging and assessment of moderate to severe Alzheimer disease. Neurology 65, S10–S17 (2005)

    Article  Google Scholar 

  13. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  14. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4, 627 (2013)

    Google Scholar 

  15. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  16. Korner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  17. Morris, A.S., Langari, R.: Measurement and Instrumentation. Academic Press, San Diego (2012)

    Google Scholar 

  18. Obuchowski, N.A., Bullen, J.: Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys. Med. Biol. 63, 07TR01 (2018)

    Article  Google Scholar 

  19. Organization, W.H.: Dementia: World Health Organization, Switzerland (2012)

    Google Scholar 

  20. Percival, D.B., Walden, A.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  21. Ridouh, A., Boutana, D., Bourennane, S.: EEG signals classification based on time frequency analysis. J. Circ. Syst. Comput. 26, 1750198 (2017)

    Article  Google Scholar 

  22. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75, 027105 (2007)

    Article  Google Scholar 

  23. Stam, C., Jelles, B., Achtereekte, H., Van Birgelen, J., Slaets, J.: Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer’s disease. Clin. Electroencephalogr. 27(2), 69–77 (1996)

    Article  Google Scholar 

  24. Tsolaki, A., Kazis, D., Kompatsiaris, I., Kosmidou, V., Tsolaki, M.: Electroencephalogram and Alzheimer’s disease: clinical and research approaches. Int. J. Alzheimer’s Dis. 2014, 10 (2014)

    Google Scholar 

  25. Ubeyli, E.D.: Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Comput. Biol. Med. 38, 14–22 (2011)

    Article  Google Scholar 

  26. Ubeyli, E.D., Guler, I.: Features extracted by eigenvector methods for detecting variability of EEG signals. Comput. Biol. Med. 28, 592–603 (2007)

    Google Scholar 

  27. Yagneswaran, S., Baker, M., Petrosian, A.: Power frequency and wavelet characteristics in differentiating between normal and alzheimer EEG. In: Engineering in Medicine and Biology, 2002 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002 Proceedings of the Second Joint, vol. 1. IEEE (2002)

    Google Scholar 

  28. Zar, J.H.: Biostatistical Analysis. Prentice Hall, New Jersey (2010)

    Google Scholar 

  29. Zhang, Y., Liu, B., Ji, X., Huang, D.: Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process. Lett. 45, 365–378 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

A. M. P. acknowledges the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. L. E. B. acknowledges the support of São Paulo Research Foundation (FAPESP), grant 2016/17914-3. A. S. L. O. C. acknowledges the support of São Paulo Research Foundation (FAPESP), grant 2018/25358-9. The authors would like to thank Dr. Dennis Duke of Florida State University for providing EEG data for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriana S. L. O. Campanharo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.L.O. (2019). Use of Complex Networks for the Automatic Detection and the Diagnosis of Alzheimer’s Disease. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20521-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20520-1

  • Online ISBN: 978-3-030-20521-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics