Skip to main content

A Deeper Look into ‘Deep Learning of Aftershock Patterns Following Large Earthquakes’: Illustrating First Principles in Neural Network Physical Interpretability

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence (IWANN 2019)

Abstract

In the last years, deep learning has solved seemingly intractable problems, boosting the hope to find (approximate) solutions to problems that now are considered unsolvable. Earthquake prediction - a recognized moonshot challenge - is obviously worthwhile exploring with deep learning. Although encouraging results have been obtained recently, deep neural networks (DNN) may sometimes create the illusion that patterns hidden in data are complex when this is not necessarily the case. We investigate the results of De Vries et al. [Nature, vol. 560, 2018] who defined a DNN of 6 hidden layers with 50 nodes each, and with an input layer of 12 stress features, to predict aftershock patterns in space. The performance of their DNN was assessed using ROC with AUC = 0.85 obtained. We first show that a simple artificial neural network (ANN) of 1 hidden layer yields a similar performance, suggesting that aftershock patterns are not necessarily highly abstract objects. Following first principle guidance, we then bypass the elastic stress change tensor computation, making profit of the tensorial nature of neural networks. AUC = 0.85 is again reached with an ANN, now with only two geometric and kinematic features. Not only seems deep learning to be “excessive” in the present case, the simpler ANN streamlines the process of aftershock forecasting, limits model bias, and provides better insights into aftershock physics and possible model improvement. Complexification is a controversial trend in all of Science and first principles should be applied wherever possible to gain physical interpretations of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  2. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  3. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017)

    Article  MathSciNet  Google Scholar 

  4. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. PNAS 115(34), 8505–8510 (2018)

    Article  MathSciNet  Google Scholar 

  5. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018)

    Article  Google Scholar 

  6. Kong, Q., Trugman, D.T., Ross, Z.E., Bianco, M.J., Meade, B.J., Gerstoft, P.: Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90(1), 3–14 (2019)

    Article  Google Scholar 

  7. Panakkat, A., Adeli, H.: Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators. Comput.-Aided Civ. Infrastruct. Eng. 24, 280–292 (2009)

    Article  Google Scholar 

  8. Geller, R.J., Jackson, D.D., Kagan, Y.Y., Mulargia, F.: Earthquakes cannot be predicted. Science 275(5306), 1616–1617 (1997)

    Article  Google Scholar 

  9. Brodi, B.: A neural-network model for earthquake occurrence. J. Geodyn. 32, 289–310 (2001)

    Article  Google Scholar 

  10. Moustra, M., Avraamides, M., Christodoulou, C.: Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 38, 15032–15039 (2011)

    Article  Google Scholar 

  11. DeVries, P.M.R., Viégas, F., Wattenberg, M., Meade, B.J.: Deep learning of aftershock patterns following large earthquakes. Nature 560, 632–634 (2018)

    Article  Google Scholar 

  12. Vere-Jones, D., Ben-Zion, Y., Zuniga, R.: Statistical seismology. Pure Appl. Geophys. 162, 1023–1026 (2005)

    Article  Google Scholar 

  13. Mignan, A.: Retrospective on the Accelerating Seismic Release (ASR) hypothesis: controversy and new horizons. Tectonophysics 505, 1–16 (2011)

    Article  Google Scholar 

  14. Sornette, D.: Critical Phenomena in Natural Sciences, Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer, New York (2009). https://doi.org/10.1007/3-540-33182-4

    Book  MATH  Google Scholar 

  15. Mignan, A.: Seismicity precursors to large earthquakes unified in a stress accumulation framework. Geophys. Res. Lett. 39, L21308 (2012)

    Article  Google Scholar 

  16. Mignan, A.: Static behaviour of induced seismicity. Nonlin. Process. Geophys. 23, 107–113 (2016)

    Article  Google Scholar 

  17. Mignan, A.: Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlin. Process. Geophys. 25, 241–250 (2018)

    Article  Google Scholar 

  18. Tiampo, K.F., Shcherbakov, R.: Seismicity-based earthquake forecasting techniques: ten years of progress. Tectonophysics 522–523, 89–121 (2012)

    Article  Google Scholar 

  19. Mignan, A.: Modeling aftershocks as a stretched exponential relaxation. Geophys. Res. Lett. 42, 9726–9732 (2015)

    Article  Google Scholar 

  20. Richards-Dinger, K., Stein, R.S., Toda, S.: Decay of aftershock density with distance does not indicate triggering by dynamic stress. Nature 467, 583–586 (2010)

    Article  Google Scholar 

  21. Hainzl, S., Brietzke, G.B., Zöller, G.: Quantitative earthquake forecasts resulting from static stress triggering. J. Geophys. Res. 115, B11311 (2010)

    Article  Google Scholar 

  22. Båth, M.: Lateral inhomogeneities of the upper mantle. Tectonophysics 2(6), 483–514 (1965)

    Article  Google Scholar 

  23. Gerstenberger, M.C., Wiemer, S., Jones, L.M., Reasenberg, P.A.: Real-time forecasts of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005)

    Article  Google Scholar 

  24. Lakkos, S., Hadjiprocopis, A., Compley, R., Smith, P.: A neural network scheme for earthquake prediction based on the seismic electric signals. In: Proceedings of the IEEE Conference on Neural Networks and Signal Processing, pp. 681–689. IEEE, Ermioni (1994)

    Google Scholar 

  25. Alves, E.I.: Notice on the predictability of earthquake occurrences. Memórias e Notícias 117, 51–61 (1994)

    Google Scholar 

  26. Liu, Y., Wang, Y., Li, Y., Zhang, B., Wu, G.: Earthquake prediction by RBF neural network ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 962–969. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28648-6_153

    Chapter  Google Scholar 

  27. Alves, E.I.: Earthquake forecasting using neural networks: results and future work. Nonlin. Dyn. 44, 341–349 (2006)

    Article  Google Scholar 

  28. Panakkat, A., Adeli, H.: Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 17(1), 13–33 (2007)

    Article  Google Scholar 

  29. Martínez-Álvarez, F., Reyes, J., Morales-Esteban, A., Rubio-Escudero, C.: Determining the best set of seismicity indicators to predict earthquakes. Two case studies Chile and the Iberian Peninsula. Knowl.-Based Syst. 50, 198–210 (2013)

    Article  Google Scholar 

  30. Asencio-Cortés, G., Martínez-Álvarez, F., Morales-Esteban, A., Reyes, J.: A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction. Knowl.-Based Syst. 101, 15–30 (2016)

    Article  Google Scholar 

  31. Madahizadeh, R., Allamehzadeh, M.: Prediction of aftershocks distribution using artificial neural networks and its application on the May 12, 2008 Sichuan earthquake. JSEE 11(3), 111–120 (2009)

    Google Scholar 

  32. Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C.J., Johnson, P.A.: Machine learning predicts laboratory earthquakes. Geophys. Res. Lett. 44, 9276–9282 (2017)

    Article  Google Scholar 

  33. Leach, R., Dowla, F.: Earthquake early warning system using real-time signal processing. In: Proceedings of the 1996 IEEE Signal Processing Society Workshop, pp. 463–472. IEEE, Kyoto (1996)

    Google Scholar 

  34. Kong, Q., Allen, R.M., Schreier, L., Kwon, Y.-W.: MyShake: a smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2, e1501055 (2016)

    Article  Google Scholar 

  35. Perol, T., Gharbi, M., Denolle, M.: Convolutional neural network for earthquake detection and location. Sci. Adv. 4, e1700578 (2018)

    Article  Google Scholar 

  36. Ross, Z.E., Meier, M.-A., Hauksson, E.: P wave arrival picking and first-motion polarity determination with deep learning. J. Geophys. Res. Solid Earth 123, 5120–5129 (2018)

    Article  Google Scholar 

  37. Ross, Z.E., Yue, Y., Meier, M.-A., Hauksson, E.: Phaselink: a deep learning approach to seismic phase association. J. Geophys. Res. Solid Earth (2019). https://doi.org/10.1029/2018jb016674

    Google Scholar 

  38. Bouchon, M., Karabulut, H., Aktar, M., Özalaybey, S., Schmittbuhl, J., Bouin, M.P.: Extended nucleation of the 1999 Mw 7.6 Izmit earthquake. Science 331(6019), 877–880 (2011)

    Article  Google Scholar 

  39. Mignan, A.: The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Sci. Rep. 4, 4099 (2014)

    Article  Google Scholar 

  40. Mignan, A.: Asymmetric Laplace mixture modelling of incomplete power-law distributions: application to ‘seismicity vision’. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 944, pp. 30–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17798-0_4

    Chapter  Google Scholar 

  41. Valentine, A.P., Trampert, J.: Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data. Geophys. J. Int. 189, 1183–1202 (2012)

    Article  Google Scholar 

  42. Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z., Andrews, J.: Machine learning seismic wave discrimination: application to earthquake early warning. Geophys. Res. Lett. 45, 4773–4779 (2018)

    Article  Google Scholar 

  43. International Seismological Center. http://www.isc.ac.uk/. Accessed 29 Jan 2019

  44. Finite-Source Rupture Model Database. http://equake-rc.info/SRCMOD/. Accessed 29 Jan 2019

  45. Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75(4), 1135–1154 (1985)

    Google Scholar 

  46. King, G.C.P.: Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatise Geophys. 4, 225–255 (2007)

    Article  Google Scholar 

  47. Nature News: Artificial intelligence nails predictions of earthquake aftershocks. https://www.nature.com/articles/d41586-018-06091-z. Accessed 29 Jan 2019

  48. The New York Times: A.I. is Helping Scientists Predict When and Where the Next Big Earthquake Will Be. https://www.nytimes.com/2018/10/26/technology/earthquake-predictions-artificial-intelligence.html. Accessed 29 Jan 2019

  49. Futurism: Google’s AI can help predict where earthquake aftershocks are most likely. https://futurism.com/the-byte/aftershocks-earthquake-prediction. Accessed 29 Jan 2019

  50. The Verge: Google and Harvard team up to use deep learning to predict earthquake aftershocks. https://www.theverge.com/2018/8/30/17799356/ai-predict-earthquake-aftershocks-google-harvard. Accessed 29 Jan 2019

  51. Meade, B.J., DeVries, P.M.R., Faller, J., Viegas, F., Wattenberg, M.: What is better than coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett. 44, 11409–11416 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Mignan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mignan, A., Broccardo, M. (2019). A Deeper Look into ‘Deep Learning of Aftershock Patterns Following Large Earthquakes’: Illustrating First Principles in Neural Network Physical Interpretability. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20521-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20520-1

  • Online ISBN: 978-3-030-20521-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics