Skip to main content

Ensemble Transfer Learning Framework for Vessel Size Estimation from 2D Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

The term gross tonnage refers to the internal volume of a vessel and it has several legal, administrative and safety uses. Therefore, there is significant value in developing a mechanism for the automatic estimation of vessel size based on 2D images taken in uncontrolled conditions. However, this is a demanding task as vessels can be photographed from various angles and distances, a part of a vessel can be obstructed, or a vessel can blend with the background. We proposed an ensemble of fine-tuned transfer learning models, which we trained on 20,000 images in a training dataset consisting of randomly downloaded images from the Shipspotting website. Multiple deep learning methods were applied and modified for regression problems, together with two classical machine learning algorithms. A detailed analysis of model performances was given, based on which it can be concluded that such an approach results in a vessel size evaluation of the same quality as with the best human experts from the corresponding field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foley, H., Matlin, M.: Sensation and Perception. Psychology Press, London (2015)

    Book  Google Scholar 

  2. Yantis, S.: Sensation and Perception. Macmillan International Higher Education (2013)

    Google Scholar 

  3. DeAngelis, G.C., Cumming, B.G., Newsome, W.T.: Cortical area MT and the perception of stereoscopic depth. Nature 394(6694), 677 (1998). https://doi.org/10.1038/29299

    Article  Google Scholar 

  4. International Convention on Tonnage Measurement of Ships. http://www.imo.org/en/about/conventions/listofconventions/pages/international-convention-on-tonnage-measurement-of-ships.aspx. Accessed 4 Feb 2019

  5. Standley, T., Sener, O., Chen, D., Savarese, S.: image2mass: estimating the mass of an object from its image. In: Conference on Robot Learning, pp. 324–333 (2017)

    Google Scholar 

  6. Tasdemir, S., Urkmez, A., Inal, S.: Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Comput. Electron. Agric. 76(2), 189–197 (2011). https://doi.org/10.1016/j.compag.2011.02.001

    Article  Google Scholar 

  7. Bozkurt, Y., Aktan, S., Ozkaya, S.: Body weight prediction using digital image analysis for slaughtered beef cattle. J. Appl. Anim. Res. 32(2), 195–198 (2007). https://doi.org/10.1080/09712119.2007.9706877

    Article  Google Scholar 

  8. Yang, Y., Teng, G.: Estimating pig weight from 2D images. In: Li, D. (ed.) CCTA 2007. TIFIP, vol. 259, pp. 1471–1474. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77253-0_100

    Chapter  Google Scholar 

  9. Pezzuolo, A., Guarino, M., Sartori, L., González, L.A., Marinello, F.: On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Comput. Electron. Agric. 148, 29–36 (2018). https://doi.org/10.1016/j.compag.2018.03.003

    Article  Google Scholar 

  10. Sabanci, K., Ekinci, S., Karahan, A.M., Aydin, C.: Weight estimation of wheat by using image processing techniques. J. Image Graph. 4(1), 51–54 (2016). https://doi.org/10.18178/joig.4.1.51-54

    Article  Google Scholar 

  11. Javadikia, P., Dehrouyeh, M.H., Naderloo, L., Rabbani, H., Lorestani, A.N.: Measuring the weight of egg with image processing and ANFIS model. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011. LNCS, vol. 7076, pp. 407–416. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27172-4_50

    Chapter  Google Scholar 

  12. Wu, J., Lim, J.J., Zhang, H., Tenenbaum, J.B., Freeman, W.T.: Physics 101: learning physical object properties from unlabeled videos. In: BMVC, vol. 2 (2016). https://doi.org/10.5244/c.30.39

  13. He, Y., Xu, C., Khanna, N., Boushey, C.J., Delp, E.J.: Food image analysis: segmentation, identification and weight estimation. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2013). https://doi.org/10.1109/icme.2013.6607548

  14. Chae, J., et al.: Volume estimation using food specific shape templates in mobile image-based dietary assessment. In: Computational Imaging IX, vol. 7873. International Society for Optics and Photonics (2011). https://doi.org/10.1117/12.876669

  15. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  16. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017). https://doi.org/10.1109/cvpr.2017.264

  17. Solmaz, B., Gundogdu, E., Yucesoy, V., Koc, A.: Generic and attribute-specific deep representations for maritime vessels. IPSJ T. Comput. Vis. Appl. 9, 1–18 (2017). https://doi.org/10.1186/s41074-017-0033-4

    Article  Google Scholar 

  18. Gundogdu, E., Solmaz, B., Yücesoy, V., Koç, A.: MARVEL: a large-scale image dataset for maritime vessels. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 165–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_11

    Chapter  Google Scholar 

  19. Ship Photos and Ship Tracker. http://www.shipspotting.com. Accessed 10 Oct 2018

  20. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965). https://doi.org/10.2307/2333709

    Article  MathSciNet  MATH  Google Scholar 

  21. Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications Co., Greenwich (2017)

    Google Scholar 

  22. Abadi, M. et al.: TensorFlow: large-scale machine learning on heterogeneous systems. http://www.tensorflow.org (2015)

  23. Miličević, M., Žubrinić, K., Obradović, I., Sjekavica, T.: Data augmentation and transfer learning for limited dataset ship classification. WSEAS Trans. Syst. Control 13, 460–465 (2018)

    Google Scholar 

  24. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive analysis of deep regression. arXiv preprint arXiv:1803.08450 (2018)

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). https://doi.org/10.1109/cvpr.2016.308

  27. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017). https://doi.org/10.1109/cvpr.2017.195

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/cvpr.2016.90

  29. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/tkde.2009.191

    Article  Google Scholar 

  30. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  32. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? arXiv preprint arXiv:1608.08614 (2016)

  33. Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  34. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  35. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  36. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Masters, D., Luschi, C.: Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612 (2018)

  38. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  39. Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., Batra, D.: Why M heads are better than one: training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Miličević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miličević, M., Žubrinić, K., Grbavac, I., Kešelj, A. (2019). Ensemble Transfer Learning Framework for Vessel Size Estimation from 2D Images. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics