Pelvic Inflammatory Disease

  • Donald E. GreydanusEmail author
  • Kevin W. Cates
  • Nina Sadigh


Pelvic inflammatory disease (PID) is a polymicrobial infection of the female upper genital tract typically due to sexual transmission of Neisseria gonorrhoeae and/or Chlamydia trachomatis. Other microbes can be involved as well that are from the vagino-cervical endogenous flora. Approximately one million PID cases are diagnosed each year in the United States with about one-third occurring in adolescents. Complications include chronic pelvic pain and infertility. The known risk factors (i.e., age, coital patterns, immunopathology, others) as well as current issues of diagnosis and management are considered. Improved outcomes can be seen if clinicians have a low index of suspicion for PID, provide regular chlamydia screening in sexually active adolescent females, carefully follow up-to-date management protocols from the US Centers for Disease Control and Prevention, and emphasize comprehensive sexuality education that include regular use of condoms with coital behavior. Other principles of prevention are also reviewed.


Pelvic inflammatory disease Neisseria gonorrhoeae Chlamydia trachomatis Risk factors Diagnosis Management Prevention 


  1. 1.
    Greydanus DE, Dodich C. Pelvic inflammatory disease: a poignant, perplexing, potentially preventable problem for patients and physicians. Curr Opin Pediatr. 2015;27(1):92–9.PubMedGoogle Scholar
  2. 2.
    Eliscu AH, Terrell LR, Blythe MJ, Burstein GR. Adolescent sexually transmitted infections. In: Omar HA, Greydanus DE, Tsitsika AK, Patel DR, Merrick J, editors. Pediatric and adolescent sexuality and gynecology: principles for the primary care clinician. New York: Nova Science Publishers Inc. ch 10: 567–575; 2010.Google Scholar
  3. 3.
    Price MJ, Ades AE, Welton NJ, Simms I, Macleod J, Horner PJ. Proportion of pelvic inflammatory disease cases caused by chlamydia trachomatis: consistent picture from different methods. J Infect Dis. 2016;214(4):617–24.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Brunham RC, Gottlieb SL, Paavonen J. Pelvic inflammatory disease. N Engl J Med. 2015;372(21):2039–48.PubMedGoogle Scholar
  5. 5.
    Ford GW, Decker CF. Pelvic inflammatory disease. Dis Mon. 2016;62(8):301–5.PubMedGoogle Scholar
  6. 6.
    French CE, Hughes G, Nicholson A, Yung M, Ross JD, Williams T, et al. Estimation of the rate of pelvic inflammatory disease diagnoses: trends in England, 2000–2008. Sex Transm Dis. 2011;38(3):158–62.PubMedGoogle Scholar
  7. 7.
    Datta SD, Torrone E, Kruszon-Moran D, Berman S, Johnson R, Satterwhite CL, et al. Chlamydia trachomatis trends in the United States among persons 14 to 39 years of age, 1999–2008. Sex Transm Dis. 2012;39(2):92–6.PubMedGoogle Scholar
  8. 8.
    Scholes D, Satterwhite CL, Yu O, Fine D, Weinstock H, Berman S. Long-term trends in chlamydia trachomatis infections and related outcomes in a U.S. managed care population. Sex Transm Dis. 2012;39(2):81–8.PubMedGoogle Scholar
  9. 9.
    Simms I, Stephenson JM, Mallinson H, Peeling RW, Thomas K, Gokhale R, et al. Risk factors associated with pelvic inflammatory disease. Sex Transm Infect. 2006;82(6):452–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Manavi K. A review of infection with chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol. 2006;20(6):941–51.PubMedGoogle Scholar
  11. 11.
    Darville T. Recognition and treatment of chlamydial infections from birth to adolescence. Adv Exp Med Biol. 2013;764:109–22.PubMedGoogle Scholar
  12. 12.
    Taylor BD, Zheng X, Darville T, Zhong W, Konganti K, Abiodun-Ojo O, et al. Whole-exome sequencing to identify novel biological pathways associated with infertility after pelvic inflammatory disease. Sex Transm Dis. 2017;44(1):35–41.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Vicetti Miguel RD, Quispe Calla NE, Pavelko SD, Cherpes TL. Intravaginal chlamydia trachomatis challenge infection elicits TH1 and Th17 immune responses in mice that promote pathogen clearance and genital tract damage. PLoS One. 2016;11(9):e0162445.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to chlamydia trachomatis. FEMS Microbiol Rev. 2016;40:875–93. pii:fuw027.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chan YA, Hackett KT, Dillard JP. The lytic transglycosylases of Neisseria gonorrhoeae. Microb Drug Resist. 2012;18(3):271–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Schaub RE, Chan YA, Lee M, Hesek D, Mobashery S, Dillard JP. Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling, and releasing peptidoglycan in Neisseria gonorrhoeae. Mol Microbiol. 2016;102:865. Scholar
  17. 17.
    Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell Microbiol. 2016;19:e12662. Scholar
  18. 18.
    Yang XJ. Telocytes in inflammatory gynaecologic diseases and infertility. Adv Exp Med Biol. 2016;913:263–85.PubMedGoogle Scholar
  19. 19.
    Hafner LM. Pathogenesis of fallopian tube damage caused by chlamydia trachomatis infections. Contraception. 2015;92(2):108–15.PubMedGoogle Scholar
  20. 20.
    Lee NC, Rubin GL, Borucki R. The intrauterine device and pelvic inflammatory disease revisited: new results from the Women’s Health Study. Obstet Gynecol. 1988;72:1–6.PubMedGoogle Scholar
  21. 21.
    Wang LY, OuYang L, Tong F, Zhang XJ, Li XD, Wang CC, et al. The effect of contraceptive methods on reproductive tract infections risk: a cross-sectional study having a sample of 52,481 women. Arch Gynecol Obstet. 2016;294:1249–56.PubMedGoogle Scholar
  22. 22.
    Caddy S, Yudin MH, Hakim J, Money DM, Infections Disease Committee. Best practice to minimize risk of infection with intrauterine device insertion. J Obstet Gynaecol Can. 2014;36(3):266–76.PubMedGoogle Scholar
  23. 23.
    Aoun J, Dines VA, Stovall DW, Mete M, Nelson CB, Gomez-Lobo V. Effects of age, parity, and device type on complications and discontinuation of intrauterine devices. Obstet Gynecol. 2014;123(3):585–92.PubMedGoogle Scholar
  24. 24.
    Sufrin CB, Postlethwaite D, Armstrong MA, Merchant M, Wendt JM, Steinauer JE. Neisseria gonorrhea and chlamydia trachomatis screening at intrauterine device insertion and pelvic inflammatory disease. Obstet Gynecol. 2012;120(6):1314–21.PubMedGoogle Scholar
  25. 25.
    Wiesenfeld HC, Hillier SL, Krohn MA, Amortegui AJ, Heine RP, Landers DV, et al. Lower genital tract infection and endometritis: insight into subclinical pelvic inflammatory disease. Obstet Gynecol. 2002;100(3):456–63.PubMedGoogle Scholar
  26. 26.
    Wiesenfeld HC, Hllier SL, Meyn LA, Amortegui AJ, Sweet RL. Subclinical pelvic inflammatory disease and infertility. Obstet Gynecol. 2012;120(1):37–43.PubMedGoogle Scholar
  27. 27.
    Antonie F, Billiou C, Vic P. Chlamydia trachomatis Fitz-Hugh-Curtis syndrome in a female adolescent. Arch Pediatr. 2013;20(3):289–91.PubMedGoogle Scholar
  28. 28.
    Chung HJ, Choi HY, Cho YJ, Han KH, Kim YD, Jung SM, et al. Ten cases of Fitz-Hugh-Curtis syndrome. Korean J Gastroenterol. 2007;50(5):328–30.PubMedGoogle Scholar
  29. 29.
    Simon EM, April MD. Fitz-Hugh-Curtis syndrome. J Emerg Med. 2016;50(4):e197–8.PubMedGoogle Scholar
  30. 30.
    Leonov VV, Mayura NA, Lyndin MS. A Fitz-Hugh-Curtis syndrome as a premise of a hepatopancreatobiliary zone organs. [Article in Ukrainian]. Klin Khir. 2016;3:30–2.Google Scholar
  31. 31.
    Mitaka H, Kitazono H, Deshpande GA, Hiraoka E. Fitz-Hugh-Curtis syndrome lacking typical characteristics of pelvic inflammatory disease. BMJ Case Rep. 2016;2016. pii: bcr2016215711.Google Scholar
  32. 32.
    Orlowski HL, Mellnick VM, Dahiya N, Katz DS, Chang ST, Siegel C, et al. The image findings of typical and atypical genital and gynecologic infections. Abdom Radiol (NY). 2016;41:2294–309.Google Scholar
  33. 33.
    Revzin MV, Mathur M, Dave HB, Macer ML, Spektor M. Pelvic inflammatory disease: multimodality imaging approach with clinical-pathologic correlation. Radiographics. 2016;36(5):1579–96.PubMedGoogle Scholar
  34. 34.
    Muschart X. A case report with Fitz-Hugh-Curtis syndrome, what does it mean? Acta Clin Belg. 2015;70(5):357–8.PubMedGoogle Scholar
  35. 35.
    Antonie F, Billiou C, Vic P. Chlamydia trachomatis Fitz-Hugh-Curtis syndrome in a female adolescent. [Article in French]. Arch Pediatr. 2013;20(3):289–91.PubMedGoogle Scholar
  36. 36.
    Ikonomidis A, Strakas M, Stavrou AG, Papageorgiou E, Lainis A, Tsamparli M, et al. Fitz-Hugh-Curtis syndrome in a 16-year-old female due to Ureaplasma urealyticum. Eur J Obstet Gynecol Reprod Biol. 2015;194:261–2.PubMedGoogle Scholar
  37. 37.
    Kim JS, Kim HC, Kim SW, Yang DM, Rhee SJ, Shin JS. Does the degree of perihepatitis have any relevance to the severity of the manifestations of pelvic inflammatory disease on multidetector computed tomography? J Comput Assist Tomogr. 2015;39(6):901–6.PubMedGoogle Scholar
  38. 38.
    Wang PY, Zhang L, Wang X, Liu XJ, Chen L, Wang X, et al. Fitz-Hugh-Curtis syndrome: some diagnostic value of dynamic enhanced MSCT. J Phys Ther Sci. 2015;27(6):1641–4.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Workowski KA, Bolan GA, Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64(RR-03):1–137.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Gaitan H, Angel E, Diaz R, Parada A, Sanchez L, Vargas C. Accuracy of five different diagnostic techniques in mild-to-moderate pelvic inflammatory disease. Infect Dis Obstet Gynecol. 2002;10(4):171–80.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Erenel H, Yilmaz N, Oncul M, Acikgoz AS, Karatas S, Ayhan I, et al. Usefulness of serum procalcitonin levels in predicting tubo-ovarian abscess in patients with acute pelvic inflammatory disease. Gynecol Obstet Invest. 2017;82(3):262–6.PubMedGoogle Scholar
  42. 42.
    Greydanus DE, Seyler J, Omar HA. Sexually transmitted diseases (STDs). In: Adolescent medicine: pharmacotherapeutics in general, mental, and sexual health. Berlin/Boston: De Gruyter, ch 18: page 338; 2012.Google Scholar
  43. 43.
    Simpson-Camp L, Richardson EJ, Alaish SM. Streptococcus viridans tubo-ovarian abscess in an adolescent virgin. Pediatr Int. 2012;54(5):706–9.PubMedGoogle Scholar
  44. 44.
    Goodwin K, Fleming N, Dumont T. Tubo-ovarian abscess in virginal adolescent females: a case report and review of the literature. J Pediatr Adolesc Gynecol. 2013;26(4):e99–102.PubMedGoogle Scholar
  45. 45.
    Kielly M, Jamieson MA. Pelvic inflammatory disease in virginal adolescent females without tubo-ovarian abscess. J Pediatr Adolesc Gynecol. 2014;27(1):e5–7.PubMedGoogle Scholar
  46. 46.
    Cho HW, Koo YJ, Min KJ, Hong JH, Lee JK. Pelvic inflammatory disease in virgin women with tubo-ovarian abscess: a single-center experience and literature review. J Pediatric Adolesc Gynecol. 2015. pii:S1083-3188(15)00292-2.Google Scholar
  47. 47.
    Woods JL, Scurlock AM, Hensel DJ. Pelvic inflammatory disease in the adolescent: understanding diagnosis and treatment as a health care provider. Pediatr Emerg Care. 2013;29(6):720–5.PubMedGoogle Scholar
  48. 48.
    Bugg CW, Taira T. Pelvic inflammatory disease: diagnosis and treatment in the emergency department. Emerg Med Pract. 2016;18(12):1–24.PubMedGoogle Scholar
  49. 49.
    Shih TY, Gavdos CA, Rothman RE, Hsieh YH. Poor provider adherence to the Centers for Disease Control and Prevention treatment guidelines in US emergency visits with a diagnosis of pelvic inflammatory disease. Sex Transm Dis. 2011;38(4):299–305.PubMedGoogle Scholar
  50. 50.
    Goyal M, Hersh A, Luan X, Localio R, Trent M, Zaoutis T. Are emergency departments appropriately treating adolescent pelvic inflammatory disease? JAMA Pediatr. 2013;167(7):672–3.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Liata E, Bernstein KT, Kerani RP, Pathela P, Schwebke JR, Schumacher C, et al. Management of pelvic inflammatory disease in selected U.S. sexually transmitted disease clinics: sexually transmitted disease surveillance network, January 2010-December, 2011. Sex Transm Dis. 2015;42(8):429–33.Google Scholar
  52. 52.
    Wiske CP, Palisoul M, Tapé C, Baird J, McGregor AJ. Physician specialty influences care of pelvic inflammatory disease. J Womens Health (Larchmt). 2016;25(7):723–8.Google Scholar
  53. 53.
    Boothby M, Page J, Pryor R, Ross JD. A comparison of treatment outcomes for moxifloxacin versus ofloxacin/metronidazole for first-time treatment of uncomplicated non-gonococcal pelvic inflammatory disease. Int J STD AIDS. 2010;21(3):195–7.PubMedGoogle Scholar
  54. 54.
    Judlin P, Liao Q, Liu Z, Reimnitz P, Hampel B, Arvis P. Efficacy and safety of moxifloxacin in uncomplicated pelvic inflammatory disease: the MONALISA study. BJOG. 2010;117(12):1475–84.PubMedGoogle Scholar
  55. 55.
    Brun JL, Graesslin O, Fauconnier A, Verdon R, Agostini A, Bourret A, et al. Updated French guidelines for diagnosis and management of pelvic inflammatory disease. Int J Gynaecol Obstet. 2016;134(2):121–5.PubMedGoogle Scholar
  56. 56.
    WHO guidelines for the treatment of Neisseria gonorrhoeae. Geneva: World Health Organization, WHO guidelines approved by the Guidelines Review Committee, WHO Press, 1211 Geneva 27, Switzerland, 2016.Google Scholar
  57. 57.
    Leli C, Mencacci A, Bombaci JC, D’Alò F, Farinelli S, Vitali M, et al. Prevalence and antimicrobial susceptibility of Ureaplasma urealyticum and Mycoplasma hominis in a population of Italian and immigrant outpatients. Infez Med. 2012;20(2):82–7.PubMedGoogle Scholar
  58. 58.
    Munoz JL, Goje OJ. Mycoplasma genitalium: an emerging sexually transmitted infection. Scientifica (Cairo). 2016;2016:7537318. Scholar
  59. 59.
    Jensen JS, Cusini M, Gomberg M, Moi H. Background review for the 2016 European guideline on Mycoplasma genitalium infections. J Eur Acad Dermatol Venereol. 2016;30(10):1686–93.PubMedGoogle Scholar
  60. 60.
    Garbin O, Verdon R, Fauconnier A. Treatment of the tubo-ovarian abscesses. J Gynecol Obstet Biol Reprod (Paris). 2012;41(8):875–85.Google Scholar
  61. 61.
    Smith KJ, Ness RB, Roberts MS. Hospitalization for pelvic inflammatory disease: a cost-effectiveness analysis. Sex Transm Dis. 2007;34(2):108–12.PubMedGoogle Scholar
  62. 62.
    Gray-Swain MR, Peipert JF. Pelvic inflammatory disease in adolescents. Curr Opin Obstet Gnecol. 2006;18(5):503–10.Google Scholar
  63. 63.
    Weström L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility. A cohort of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis. 1992;19(4):185–92.PubMedGoogle Scholar
  64. 64.
    United States Preventive Services Task Force. Screening for chlamydial infections: recommendations and rationale. Am J Prev Med. 2001;20(3S):90–4.Google Scholar
  65. 65.
    Schoeman SA, Stewart CM, Booth RA, Smith SD, Wilcox MH, Wilson JD. Assessment of best single sample for finding chlamydia in women with and without symptoms: a diagnostic test study. BMJ. 2012;345:e8013.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Abu Raya B, Bamberger E, Kerem NC, Kessel A, Srugo I. Beyond “safe sex” – can we fight adolescent pelvic inflammatory disease? Eur J Pediatr. 2013;172(5):581–90.PubMedGoogle Scholar
  67. 67.
    Meyer T. Diagnostic procedures to detect Chlamydia trachomatis infections. Microorganisms. 2016;4(3). pii: E25.
  68. 68.
    Herzog SA, Heijne JC, Scott P, Althaus CL, Low N. Direct and indirect effects of screening for chlamydia trachomatis on the prevention of pelvic inflammatory disease: a mathematical modeling study. Epidemiology. 2013;24(6):854–62.PubMedGoogle Scholar
  69. 69.
    Soleymani Majd H, Ismail L, Currie I. GPs should be vigilant for pelvic inflammatory disease. Practitioner. 2011;255(1738):15–8,2.PubMedGoogle Scholar
  70. 70.
    Scholes D, Stergachis A, Heidrich FE, Andrilla H, Holmes KK, Stamm WE. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. N Engl J Med. 1996;334(21):1362–6.PubMedGoogle Scholar
  71. 71.
    Gottlieb SL, Xu F, Brunham RC. Screening and treating chlamydia trachomatis genital infection to prevent pelvic inflammatory disease: interpretation of findings from randomized control trials. Sex Transm Dis. 2013;40(2):97–102.PubMedGoogle Scholar
  72. 72.
    Aghaizu A, Adams EJ, Turner K, Kerry S, Hav P, Simms J, Oakeshott P. What is the cost of pelvic inflammatory disease and how much could be prevented by screening for chlamydia trachomatis? Cost analysis of the Prevention of Pelvic Infection (POPI) trial. Sex Transm Infect. 2011;87(4):312–7.PubMedGoogle Scholar
  73. 73.
    Bender N, Hermann B, Andersen B, Hocking JS, van Bergen J, Morgan J, et al. Chlamydia infection, pelvic inflammatory disease, ectopic pregnancy and infertility: cross-national study. Sex Transm Infect. 2011;87(7):601–8.PubMedGoogle Scholar
  74. 74.
    Holmes KK, Levine R, Weaver M. Effectiveness of condoms in preventing sexually transmitted infections. Bull World Health Organ. 2004;82(6):454–61.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Mindel A, Sawleshwarkar S. Condoms for sexually transmissible infection prevention: politics versus science. Sex Health. 2008;5(1):1–8.PubMedGoogle Scholar
  76. 76.
    Greydanus DE, Pratt HD. Human sexuality. Int J Child Adolesc Health. 2016;9(3):11–7.Google Scholar
  77. 77.
    Friedman AL, Bloodgood B. “Something we’d rather not talk about”: findings from CDC exploratory research on sexually transmitted disease communication with girls and women. J Womens Health (Larchmt). 2010;19(10):1823–31.Google Scholar
  78. 78.
    Trent M, Ellen JM, Frick KD. Estimating the direct costs of pelvic inflammatory disease in adolescents: a within-system analysis. Sex Transm Dis. 2011;38(4):326–8.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Price MJ, Ades AE, Soldan K, Welton NJ, Macleod J, Simms I, et al. The natural history of chlamydia trachomatis infection in women: a multi-parameter evidence synthesis. Health Technol Assess. 2016;20(22):1–125.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Risser WL, Risser JM, Benjamins LJ. Pelvic inflammatory disease in adolescents between the time of testing and treatment and after treatment for gonorrheal and chlamydia infection. Int J STD AIDS. 2012;23(7):457–8.PubMedGoogle Scholar
  81. 81.
    Balamuth F, Zhao H, Mollen C. Toward improving the diagnosis and the treatment of adolescent pelvic inflammatory disease in emergency departments: results of a brief, educational intervention. Pediatr Emerg Care. 2010;26(2):85–92.PubMedGoogle Scholar
  82. 82.
    Kohn JE, Hacker JG, Rousselle MA, Gold M. Knowledge and likelihood to recommend intrauterine devices for adolescents among school-based health center providers. J Adolesc Health. 2012;51(4):319–24.PubMedGoogle Scholar
  83. 83.
    Biggs MA, Harper CC, Malvin J, Brindis CD. Factors influencing the provision of long-acting reversible contraception in California. Obstet Gynecol. 2014;123(3):593–602.PubMedGoogle Scholar
  84. 84.
    Watson J, Carlile J, Dunn A, Evans M, Fratto E, Hartsell J, et al. Increased gonorrhea cases-Utah, 2009–2014. MMWR Morb Mortal Wkly Rep. 2016;65(34):889–93.PubMedGoogle Scholar
  85. 85.
    Kirkcaldy RD, Harvey A, Papp JR, Del Rio C, Soge OO, Holmes KK, et al. Neisseria gonorrhoeae antimicrobial susceptibility surveillance-the gonococcal isolate surveillance project, 27 sites, United States, 2014. MMWR Surveill Summ. 2016;65(7):1–19.PubMedGoogle Scholar
  86. 86.
    Price MJ, Ades AE, De Angelis D, Welton NJ, Macleod J, Soldan K, et al. Risk of pelvic inflammatory disease following chlamydia trachomatis infection: analysis of prospective studies with a multistate model. Am J Epidemiol. 2013;178(3):484–92.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Chow JM. Measuring the uptake and impact of chlamydia screening programs – easier said than done. Sex Transm Dis. 2012;39(2):89–91.PubMedGoogle Scholar
  88. 88.
    Trent M. Status of adolescent pelvic inflammatory disease management in the United States. Curr Opin Obstet Gynecol. 2013;25(5):350–6.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol. 2016;42(6):928–41.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Gottlieb SL, Deal CD, Giersing B, Rees H, Bolan G, Johnston C, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine. 2016;34(26):2939–47.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Chakraborti S, Lewis LA, Cox AD, St Michael F, Li J, Rice PA, et al. Phase-variable heptose I glycan extensions modulate efficacy of vaccine antibody directed against Neisseria gonorrhoeae lipooligosaccharide. J Immunol. 2016;196(11):4576–86.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, et al. Proteomics-driven antigen discovery for development of vaccines against gonorrhea. Mol Cell Proteomics. 2016;15(7):2338–55.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wen Z, Boddicker MA, Kaufhold RM, Khandelwal P, Durr E, Qiu P, et al. Recombinant expression of chlamydia trachomatis major outer membrane protein in E coli outer membrane as a substrate for vaccine research. BMC Microbiol. 2016;16(1):165.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Pourhajibagher M, Bahador A. Designing and in silico analysis of PorB protein from chlamydia trachomatis for developing a vaccine candidate. Drug Res (Stuttig). 2016;66:479–83.Google Scholar
  95. 95.
    Baud D, Stojanov M. Will a vaccine against chlamydia trachomatis be available soon? [Article in French]. Rev Med Suisse. 2015;11(492):1993–4.PubMedGoogle Scholar
  96. 96.
    Stary G, Olive A, Radovic-Moreno AF, Gondek D, Alvarez D, Basto PA, et al. Vaccines. A mucosal vaccine against chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015;348(6241):aaa8205.Google Scholar
  97. 97.
    Derniaux E, Lucereau-Barbier M, Graesslin O. Follow-up and counseling after pelvic inflammatory disease. [Article in French]. J Gynecol Obstet Biol Reprod (Paris). 2012;41(8):922–9.Google Scholar
  98. 98.
    Das BB, Ronda J, Trent M. Pelvic inflammatory disease: improving awareness, prevention, and treatment. Infect Drug Resist. 2016;9:191–7.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Jatlaoui TC, Riley HE, Curtis KM. The safety of intrauterine devices among young women: a systematic review. Contraception. 2016. pii: S0010-7824(16)30456-5.Google Scholar
  100. 100.
    Papic M, Wang N, Parisi SM, Baldauf E, Updike G, Schwarz EB. Same-day intrauterine device placement is rarely complicated by pelvic infection. Womens Health Issues. 2015;25(1):22–7.PubMedGoogle Scholar
  101. 101.
    Black A, Guilbert E, Costescu D, Dunn S, Fisher W, Kives S, et al. Canadian contraception consensus (part 3 of 4): chapter 7 – intrauterine contraception. J Obstet Gynaecol Can. 2016;38(2):182–222.PubMedGoogle Scholar
  102. 102.
    Tepper NK, Curtis KM, Nanda K, Jamieson DJ. Safety of intrauterine devices among women with HIV: a systematic review. Contraception. 2016. pii: S0010-7824(16)30131-7.Google Scholar
  103. 103.
    Forsyth S, Rogstad K. Sexual health issues in adolescents and young adults. Clin Med (Lond). 2015;15(5):447–51.Google Scholar
  104. 104.
    Cromwell PF, Risser WL, Risser JM. Prevalence and incidence of pelvic inflammatory disease in incarcerated adolescents. Sex Transm Dis. 2002;29(7):391–6.PubMedGoogle Scholar
  105. 105.
    Coker TR, Austin SB, Schuster MA. The health and health care of lesbian, gay, and bisexual adolescents. Annu Rev Public Health. 2010;31:457–77.PubMedGoogle Scholar
  106. 106.
    Patel A, DeLong G, Voigl B, Medina C. Pelvic inflammatory disease in the lesbian population – lesbian health issues: asking the right questions. Obstet Gynecol. 2000;4(Suppl 1):S29–30.Google Scholar
  107. 107.
    Campbell R. The psychological impact of rape victims. Am Psychol. 2008;63(8):702–17.PubMedGoogle Scholar
  108. 108.
    Trent M, Haggerty CL, Jennings JM, Lee S, Bass DC, Ness R. Adverse adolescent reproductive health outcomes after pelvic inflammatory disease. Arch Pediatr Adolesc Med. 2011;165:49–54.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Weström L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis. 1992;19:185.PubMedGoogle Scholar
  110. 110.
    Yang TK, Chung CJ, Chung SD, Muo CH, Chang CH, Huang CY. Risk of endometrial cancer in women with pelvic inflammatory disease: a nationwide population-based retrospective cohort study. Medicine (Baltimore). 2015;94(34):e1278.Google Scholar
  111. 111.
    Trent M, Lehmann H, Butz A, Qian Q, Ellen JM, Frick KD. Clinician perspectives on management of adolescents with pelvic inflammatory disease using standardized patient scenarios. Sex Transm Dis. 2013;40(6):496–8.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Lin HW, Tu YY, Lin SY, et al. Risk of ovarian cancer in women with pelvic inflammatory disease: a population-based study. Lancet Oncol. 2011;12(9):900–4.PubMedGoogle Scholar
  113. 113.
    Risch HA, Howe GR. Pelvic inflammatory disease and the risk of epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 1995;4:447–51.Google Scholar
  114. 114.
    Chiou WY, Chen CA, Lee MS, Lin HY, Li CYSYC, et al. Pelvic inflammatory disease increases the risk of a second primary malignancy in patients with cervical cancer treated by surgery alone. Medicine (Baltimore). 2016;95(47):e5409.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Donald E. Greydanus
    • 1
    Email author
  • Kevin W. Cates
    • 2
  • Nina Sadigh
    • 2
  1. 1.Department of Pediatric & Adolescent MedicineWestern Michigan University, Homer Stryker M.D. School of MedicineKalamazooUSA
  2. 2.Western Michigan University, Homer Stryker M.D. School of MedicineKalamazooUSA

Personalised recommendations