Skip to main content

Determining Optimal Multi-layer Perceptron Structure Using Linear Regression

  • Conference paper
  • First Online:
Business Information Systems (BIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 353))

Included in the following conference series:

Abstract

This paper presents a novel method to determine the optimal Multi-layer Perceptron structure using Linear Regression. Starting from clustering the dataset used to train a neural network it is possible to define Multiple Linear Regression models to determine the architecture of a neural network. This method work unsupervised unlike other methods and more flexible with different datasets types. The proposed method adapt to the complexity of training datasets to provide the best results regardless of the size and type of dataset. Clustering algorithm used to impose a specific analysis of data used to train the network such us determining the distance measure, normalization and clustering technique suitable with the type of training dataset used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, Y., Fan, X., Chen, J.: Affinity propagation-based probability neural network structure optimization. In: Tenth International Conference on Computational Intelligence and Security (CIS), pp. 85–89. IEEE, November 2014. https://doi.org/10.1109/cis.2014.156

  2. Thomas, A.J., Petridis, M., Walters, S.D., Gheytassi, S.M., Morgan, R.E.: On predicting the optimal number of hidden nodes. In: International Conference on Computational Science and Computational Intelligence (CSCI), pp. 565–570. IEEE, December 2015. https://doi.org/10.1109/csci.2015.33

  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006). ISBN 978-1-4939-3843-8

    MATH  Google Scholar 

  4. Pan, H., Liang, D., Tang, J., Wang, N., Li, W.: Shape recognition and retrieval based on edit distance and dynamic programming. Tsinghua Sci. Technol. 14(6), 739–745 (2009). https://doi.org/10.1016/S1007-0214(09)70144-0

    Article  Google Scholar 

  5. Amiri, S.S., Mottahedi, M., Asadi, S.: Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the US. Energy Build. 109, 209–216 (2015). https://doi.org/10.1016/j.enbuild.2015.09.073

    Article  Google Scholar 

  6. Dora, S., Sundaram, S., Sundararajan, N.: A two stage learning algorithm for a growing-pruning spiking neural network for pattern classification problems. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, July 2015. https://doi.org/10.1109/ijcnn.2015.7280592

  7. Sheela, K.G., Deepa, S.N.: Review on methods to fix number of hidden neurons in neural networks. Math. Prob. Eng. (2013). http://dx.doi.org/10.1155/2013/425740

  8. Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997). ISBN 0471179809

    Google Scholar 

  9. Esfe, M.H., et al.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transfer 66, 100–104 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.05.014

    Article  Google Scholar 

  10. Vinod, V.V., Ghose, S.: Growing nonuniform feedforward networks for continuous mappings. Neurocomputing 10(1), 55–69 (1996). https://doi.org/10.1016/0925-2312(95)00024-0

    Article  MATH  Google Scholar 

  11. Faraway, J.J.: Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, vol. 124. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  12. Dangeti, P.: Statistics for Machine Learning. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  13. Brown, S.H.: Multiple linear regression analysis: a matrix approach with MATLAB. Alabama J. Math. 34, 1–3 (2009)

    Google Scholar 

  14. Austin, P.C., Steyerberg, E.W.: The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 68(6), 627–636 (2015). https://doi.org/10.1016/j.jclinepi.2014.12.014

    Article  Google Scholar 

  15. Sasaki, T., Kinoshita, K., Kishida, S., Hirata, Y., Yamada, S.: Effect of number of input layer units on performance of neural network systems for detection of abnormal areas from X-ray images of chest. In: IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS), pp. 374–379. IEEE, September 2011. https://doi.org/10.1109/iccis.2011.6070358

  16. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010). https://doi.org/10.1109/TPAMI.2010.128

    Article  Google Scholar 

  17. Pozo, F., Vidal, Y.: Wind turbine fault detection through principal component analysis and statistical hypothesis testing. Energies 9(1), 3 (2015). https://doi.org/10.3390/en9010003

    Article  Google Scholar 

  18. Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Psychology Press, New York (2014). ISBN 9781135468255

    Book  Google Scholar 

  19. Wang, W., Morrison, T.A., Geller, J.A., Yoon, R.S., Macaulay, W.: Predicting short-term outcome of primary total hip arthroplasty: a prospective multivariate regression analysis of 12 independent factors. J. Arthroplasty 25(6), 858–864 (2010). https://doi.org/10.1016/j.arth.2009.06.011

    Article  Google Scholar 

  20. Ghaedi, M., Reza Rahimi, M., Ghaedi, A.M., Tyagi, I., Agarwal, S., Gupta, V.K.: Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood. J. Colloid Interface Sci. 461, 425–434 (2016). https://doi.org/10.1016/j.jcis.2015.09.024

    Article  Google Scholar 

  21. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley, New York (2015)

    MATH  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Parallelizing neural networks during training. U.S. Patent 9,811,775, Google Inc. (2017)

    Google Scholar 

  23. Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A.: Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42(5), 2785–2797 (2015). https://doi.org/10.1016/j.eswa.2014.09.054

    Article  Google Scholar 

  24. Ng, M.K., Li, M.J., Huang, J.Z., He, Z.: On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. (3), 503–507 (2007). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.53

    Article  Google Scholar 

  25. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999). https://doi.org/10.1109/2.781637

    Article  Google Scholar 

  26. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview, II. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 7(6), e1219 (2017). https://doi.org/10.1002/widm.1219

    Article  Google Scholar 

  27. Dalbouh, H.A., Norwawi, N.M.: Improvement on agglomerative hierarchical clustering algorithm based on tree data structure with bidirectional approach. In: Third International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 25–30. IEEE, February 2012. https://doi.org/10.1109/isms.2012.13

  28. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. CRC Press, Boca Raton (2013). ISBN 1466558210, 9781466558212

    Google Scholar 

  29. Gath, I., Geva, A.B.: Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–780 (1989). https://doi.org/10.1109/34.192473

    Article  MATH  Google Scholar 

  30. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2007). https://doi.org/10.1093/bioinformatics/btm563

    Article  Google Scholar 

  31. Zhao, Z., Xu, S., Kang, B.H., Kabir, M.M.J., Liu, Y., Wasinger, R.: Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Syst. Appl. 42(7), 3508–3516 (2015). https://doi.org/10.1016/j.eswa.2014.12.006

    Article  Google Scholar 

  32. Raghuvanshi, A.S., Tiwari, S., Tripathi, R., Kishor, N.: Optimal number of clusters in wireless sensor networks: an FCM approach. In: International Conference on Computer and Communication Technology (ICCCT), pp. 817–823. IEEE, September 2010. https://doi.org/10.1109/iccct.2010.5640391

  33. Wang, L.C., Wang, C.W., Liu, C.M.: Optimal number of clusters in dense wireless sensor networks: a cross-layer approach. IEEE Trans. Veh. Technol. 58(2), 966–976 (2009). https://doi.org/10.1109/TVT.2008.928637

    Article  Google Scholar 

  34. Liu, X., Croft, W.B.: Experiments on retrieval of optimal clusters. Technical report IR-478, Center for Intelligent Information Retrieval (CIIR), University of Massachusetts (2006)

    Google Scholar 

  35. Kumar, V., Chhabra, J.K., Kumar, D.: Performance evaluation of distance metrics in the clustering algorithms. INFOCOMP 13(1), 38–52 (2014)

    Google Scholar 

  36. Piczak, K.J.: Environmental sound classification with convolutional neural networks. In: IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, September 2015. https://doi.org/10.1109/mlsp.2015.7324337

  37. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random synaptic feedback weights support error backpropagation for deep learning. Nature Commun. 7, 13276 (2016). https://doi.org/10.1038/ncomms13276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lafif Tej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lafif Tej, M., Holban, S. (2019). Determining Optimal Multi-layer Perceptron Structure Using Linear Regression. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-20485-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20485-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20484-6

  • Online ISBN: 978-3-030-20485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics