Skip to main content

Point-Free Spectra of Linear Spreads

  • Chapter
  • First Online:
Mathesis Universalis, Computability and Proof

Part of the book series: Synthese Library ((SYLI,volume 412))

Abstract

Scott’s multiple-conclusion entailment relations, originally conceived as a means to clarify several aspects of many-valued logic, and later put to great use in a revised Hilbert programme for abstract algebra, are brought to application in the context of König’s lemma. An inductively generated entailment relation which describes the linear spreads of a detachable unbounded tree over a finite discrete set is given a direct non-inductive description. This immediately prompts a consistency result which serves as an elementary and constructive counterpart of the Weak König Lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Shoesmith and Smiley (1978) for a historical account of the development of multiple-conclusion logic.

  2. 2.

    This might as well suffice to fit this paper into place, by assessing that “all the duties imposed upon the language of mathesis universalis are done by modern logic with set theory.” (Marciszewski 1984).

  3. 3.

    A quality shared also by Scott’s information systems (Scott 1982).

  4. 4.

    We borrow this notation from formal topology (Sambin 2003; Ciraulo and Sambin 2008).

  5. 5.

    Peter Schuster has kindly pointed this out.

  6. 6.

    The proof of Proposition 2 adapts (Rinaldi et al. 2018, Proposition 4) which in turn rests on an argument by Bell (2005, p. 161 sq.). We slightly improve on Rinaldi et al. (2018) insofar as that we work with a simpler entailment relation, thus avoiding a detour to the entailment relation of prime filter of a Boolean algebra.

  7. 7.

    Tatsuji Kawai has kindly pointed this out. Kawai’s observation improved an earlier version of Proposition 14 which resorted to WLPO.

  8. 8.

    The following discussion owes to a question of the anonymous referee.

  9. 9.

    The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the John Templeton Foundation.

References

  • Aczel, P., & Rathjen, M. (2000/2001) Notes on constructive set theory (Technical report, Report No. 40). Institut Mittag–Leffler.

    Google Scholar 

  • Aczel, P., & Rathjen, M. (2010). Constructive set theory. Book draft.

    Google Scholar 

  • Bell, J. L. (2005). Set theory. Boolean-valued models and independence proofs (Oxford logic guides). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Berger, J., Ishihara, H., & Schuster, P. (2012). The weak König lemma, Brouwer’s fan theorem, De Morgan’s law, and dependent choice. Reports on Mathematical Logic, 47, 63–86.

    Google Scholar 

  • Brink, C. (1982). A note on Peirce and multiple conclusion logic. Transactions of the Charles S. Peirce Society, 18(4), 349–351.

    Google Scholar 

  • Brouwer, L. E. J. (1908). De onbetrouwbaarheid der logische principes. Tijdschrift voor Wijsbegeerte, 2, 152–158.

    Google Scholar 

  • Brouwer, L. E. J. (1910). On the structure of perfect sets of points. KNAW, Proceedings, 12, 785–794.

    Google Scholar 

  • Brouwer, L. E. J. (1925). Intuitionistische Zerlegung mathematischer Grundbegriffe. Jahresbericht der Deutschen Mathematiker-Vereinigung, 33, 251–256.

    Google Scholar 

  • Carnap, R. (1943). Formalization of logic. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cederquist, J., & Coquand, T. (2000). Entailment relations and distributive lattices. In S. R. Buss, P. Hájek, & P. Pudlák (Eds.), Logic Colloquium ’98: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic (Volume 13 of Lecture Notes in Logic, pp. 127–139). AK Peters/Springer.

    Google Scholar 

  • Ciraulo, F., & Sambin, G. (2008). Finitary formal topologies and Stone’s representation theorem. Theoretical Computer Science, 405(1–2), 11–23.

    Article  Google Scholar 

  • Coquand, T. (2005). About Stone’s notion of spectrum. Journal of Pure and Applied Algebra, 197(1–3), 141–158.

    Article  Google Scholar 

  • Coquand, T. (2009). Space of valuations. Annals of Pure and Applied Logic, 157(2–3), 97–109.

    Article  Google Scholar 

  • Coquand, T., & Lombardi, H. (2002). Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings. In M. Fontana, S.-E. Kabbaj, & S. Wiegand (Eds.), Commutative ring theory and applications (Volume 231 of Lecture Notes in Pure and Applied Mathematics, pp. 477–499), Reading, MA: Addison-Wesley.

    Google Scholar 

  • Coquand, T., & Neuwirth, S. (2017). An introduction to Lorenzen’s “Algebraic and logistic investigations on free lattices” (1951). Preprint. Available from: https://arxiv.org/abs/1711.06139.

  • Coquand, T., & Schuster, P. (2011). Unique paths as formal points. Journal of Logic and Analysis, 3(6), 1–9.

    Article  Google Scholar 

  • Coquand, T., & Zhang, G.-Q. (2000). Sequents, frames, and completeness. In H. Schwichtenberg & P. G. Clote (Eds.), Computer Science Logic. 14th International Workshop, CSL 2000 Annual Conference of the EACSL.

    Google Scholar 

  • Coquand, T., Lombardi, H., & Neuwirth, S. (2017). Lattice-ordered groups generated by an ordered group and regular systems of ideals. Preprint. Available from: https://arxiv.org/abs/1701.05115.

  • Coste, M., Lombardi, H., & Roy, M.-F. (2001). Dynamical method in algebra: Effective Nullstellensätze. Annals of Pure and Applied Logic, 111(3), 203–256.

    Article  Google Scholar 

  • Gentzen, G. (1935a). Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift, 39(1), 176–210.

    Article  Google Scholar 

  • Gentzen, G. (1935b). Untersuchungen über das logische Schließen. II. Mathematische Zeitschrift, 39(1), 405–431.

    Article  Google Scholar 

  • Hendtlass, M., & Lubarsky, R. (2016). Separating fragments of WLEM, LPO, and MP. The Journal of Symbolic Logic, 81(4), 1315–1343.

    Article  Google Scholar 

  • Hertz, P. (1929). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101(1), 457–514.

    Article  Google Scholar 

  • Ishihara, H. (1990). An omniscience principle, the König Lemma and the Hahn-Banach theorem. Mathematical Logic Quarterly, 36(3), 237–240.

    Article  Google Scholar 

  • Ishihara, H. (2005). Constructive reverse mathematics: Compactness properties. In L. Crosilla & P. Schuster (Eds.), From sets and types to topology and analysis: Towards practicable foundations for constructive mathematics (Volume 48 of Oxford Logic Guides, chapter 16). Oxford: Clarendon Press.

    Google Scholar 

  • Koppelberg, S. (1989). Handbook of boolean algebras (Vol. 1). Amsterdam: North-Holland.

    Google Scholar 

  • Lombardi, H., & Quitté, C. (2015). Commutative algebra: Constructive methods. Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Lorenzen, P. (1951). Algebraische und logistische Untersuchungen über freie Verbände. Journal of Symbolic Logic, 16(2), 81–106.

    Article  Google Scholar 

  • Marciszewski, W. (1984). The principle of comprehension as a present-day contribution to mathesis universalis. Philosophia Naturalis, 21(2–4), 523–537.

    Google Scholar 

  • Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. Bulletin of Symbolic Logic, 4(4), 418–435.

    Article  Google Scholar 

  • Payette, G., & Schotch, P. K. (2014). Remarks on the Scott–Lindenbaum theorem. Studia Logica, 102(5), 1003–1020.

    Article  Google Scholar 

  • Rinaldi, D., & Wessel, D. (2018). Cut elimination for entailment relations. To appear in Archive for Mathematical Logic, Online. https://doi.org/10.1007/s00153-018-0653-0.

  • Rinaldi, D., Schuster, P., & Wessel, D. (2018). Eliminating disjunctions by disjunction elimination. Indagationes Mathematicae, 29(1), 226–259. Virtual Special Issue – L.E.J. Brouwer, fifty years later.

    Google Scholar 

  • Sambin, G. (2003). Some points in formal topology. Theoretical Computer Science, 305(1–3), 347–408.

    Article  Google Scholar 

  • Scott, D. (1974). Completeness and axiomatizability in many-valued logic. In L. Henkin, J. Addison, C. C. Chang, W. Craig, D. Scott, & R. Vaught (Eds.), Proceedings of the Tarski Symposium (Proceedings of symposia in pure mathematics, Vol. XXV, University of California, Berkeley, CA, 1971, pp. 411–435). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Scott, D. S. (1982). Domains for denotational semantics. In M. Nielsen & E. M. Schmidt (Eds.), Automata, languages and programming (pp. 577–610). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-conclusion logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sikora, A. S. (2004). Topology on the spaces of orderings of groups. Bulletin of the London Mathematical Society, 36(4), 519–526.

    Article  Google Scholar 

  • Tarski, A. (1930). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. Monatshefte für Mathematik und Physik, 37, 361–404.

    Article  Google Scholar 

  • Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics. An introduction (Volume 121 of studies in logic and the foundations of mathematics). Amsterdam: Elsevier Science.

    Google Scholar 

  • Wessel, D. (2018). Ordering groups constructively. To appear in Communications in Algebra.

    Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to the anonymous referee for an appreciative review with valuable suggestions and remarks; to the organizers of the Humboldt-Kolleg “Proof Theory as Mathesis Universalis” for the encouragement to contribute to the present volume in the first place; to Tatsuji Kawai for having generously shared his insights; to Peter Schuster and Davide Rinaldi for guidance and support; and to Karla Misselbeck for a painstakingly thorough reading of an earlier version of the manuscript.

The research that has led to this paper was carried out when the author was a doctoral student at the Universities of Trento and Verona. Financial support through the joint doctoral programme in mathematics and the project “Categorical localisation: methods and foundations” (CATLOC) funded by the University of Verona within the programme “Ricerca di Base 2015”, is gratefully acknowledged. Further research has been undertaken within the project “A New Dawn of Intuitionism: Mathematical and Philosophical Advances” (ID 60842) funded by the John Templeton Foundation,Footnote 9 as well as within the project “Dipartimenti di Eccellenza 2018-2022” of the Italian Ministry of Education, Universities and Research (MIUR). The final version of this note was prepared when the author was visiting the Hausdorff Research Institute for Mathematics in Bonn during the Trimester Program “Types, Sets and Constructions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wessel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wessel, D. (2019). Point-Free Spectra of Linear Spreads. In: Centrone, S., Negri, S., Sarikaya, D., Schuster, P.M. (eds) Mathesis Universalis, Computability and Proof. Synthese Library, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-20447-1_19

Download citation

Publish with us

Policies and ethics