Skip to main content

Contact Mechanics of Rubber and Soft Matter

  • Chapter
  • First Online:
Modeling and Simulation of Tribological Problems in Technology

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 593))

Abstract

This chapter reviews recent advances made in the treatment of contact problems involving soft materials often characterized by non-linearly elastic material properties, such as rubber and soft biological tissues. Starting from the fundamental formulation developed to solve viscoelastic contact mechanics, the treatment of complex problems involving surface roughness, layered materials, and reciprocating contacts in dry contacts is presented in increased order of complexity. The reader is then introduced to the study of lubricated contacts, with a discussion of the interplay between viscoelastic effects in the solids and the viscosity marking the lubricant behavior. Experimental validations that cover various aspects of the work are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, scatter is defined as \(\sigma /\mu \), i.e., the ratio between the standard deviation \(\sigma \) and the mean measured value \(\mu \).

References

  • Akarapu, S., Sharp, T., & Robbins, M. O. (2011). Stiffness of contacts between rough surfaces. Physical Review Letters, 106, 204301.

    Article  Google Scholar 

  • Almqvist, A., Campañá, C., Prodanovb, N., & Persson, B. N. J. (2011). Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques. Journal of the Mechanics and Physics of Solids, 59, 11.

    Article  MathSciNet  MATH  Google Scholar 

  • André, T., Lévesque, V., Hayward, V., Lefèvre, P., & Thonnard, J.-L. (2011). Effect of skin hydration on the dynamics of fingertip gripping contact. Journal of the Royal Society Interface, 8, 64.

    Article  Google Scholar 

  • Archard, J. F., & Hirst, W. (1956). Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 236, 397.

    Article  Google Scholar 

  • Barber, J. R. (2003a). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Barber, J. R. (2003b). Bounds on the electrical resistance between contacting elastic rough bodies. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 459, 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Barber, J. R. (1974). Determining the contact area in elastic indentation problems. Journal of Strain Analysis, 9, 230–232.

    Article  Google Scholar 

  • Barber, J. R., Davies, M., & Hills, D. A. (2011). Frictional elastic contact with periodic loading. International Journal Solids Structures, 48, 2041–4047.

    Article  Google Scholar 

  • Barenblatt, G. I. (1996). Scaling, self-similarity and intermediate asymptotics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bazrafshan, M., de Rooij, M., Valefi, M., & Schipper, D. (2017). Numerical method for the adhesive normal contact analysis based on a Dugdale approximation. Tribology International, 112, 117–128.

    Article  Google Scholar 

  • Bhushan, B. (2004). Springer handbook of nanotechnology. Berlin, Heidelberg, New York: Springer.

    Book  Google Scholar 

  • Bjorkland, S. (1997). A random model for micro-slip between nominally flat surfaces. ASME Journal of Tribology, 119, 726–732.

    Article  Google Scholar 

  • Borri Brunetto, M., Chiaia, B., & Ciavarella, M. (2001). Incipient sliding of rough surfaces in contact: A multi-scale numerical analysis. Computer Methods in Applied Mechanics and Engineering, 190, 6053–6073.

    Article  MATH  Google Scholar 

  • Bottiglione, F., Carbone, G., & Mantriota, G. (2009a). Fluid leakage in seals: An approach based on percolation theory. Tribology International, 42(5), 731–737.

    Article  Google Scholar 

  • Bottiglione, F., Carbone, G., Mangialardi, L., & Mantriota, G. (2009b). Leakage mechanism in flat seals. Journal of Applied Physics, 106, 104902.

    Article  Google Scholar 

  • Bowden, F. P., & Tabor, D. (2001). The friction and lubrication of solids. Clarendon Press.

    Google Scholar 

  • Bowden, F. P., & Tabor, D. (1939). The friction and lubrication of solids. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 169, 391.

    Google Scholar 

  • Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. (Leipzig), 24, 636–679.

    Article  Google Scholar 

  • Bureau, L., Caroli, C., & Baumberger, T. (2003). Elasticity and on set of frictional dissipation at a non-sliding multi-contact interface. Proceedings Royal Society (London). A, 459, 2787–2805.

    MATH  Google Scholar 

  • Bush, A. W., Gibson, R. D., & Thomas, T. R. (1975). The elastic contact of a rough surface. Wear, 35, 87–111.

    Article  Google Scholar 

  • Campana, C., Mueser, M. H., & Robbins, M. O. (2008). Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions. Journal of Physics-Condensed Matter, 20(35), 354013.

    Article  Google Scholar 

  • Campana, C., & Muser, M. H. (2007). Contact mechanics of real vs. randomly rough surfaces: A Green’s function moleculardynamics study. Europhysics Letters, 77(3), 38005.

    Google Scholar 

  • Campana, C., Persson, B. N. J., & Muser, M. H. (2011). Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics-Condensed Matter, 23(8), 085001.

    Article  Google Scholar 

  • Carbone, G., & Persson, B. N. J. (2005a). Crack motion in viscoelastic solids: The role of the flash temperature. The European Physical Journal E-Soft Matter, 17(3), 261.

    Article  Google Scholar 

  • Carbone, G., & Persson, B. N. J. (2005b). Hot cracks in rubber: Origin of the giant toughness of rubber-like materials. Physical Review Letters, 95, 114301.

    Article  Google Scholar 

  • Carbone, G., & Pierro, E. (2012a). Sticky bio-inspired micropillars: Finding the best shape. Small, 8(9), 1449–1454.

    Article  Google Scholar 

  • Carbone, G., & Pierro, E. (2012b). Effect of interfacial air entrapment on the adhesion of bio-inspired mushroom-shaped micro-pillars. Soft Matter, 8(30), 7904–7908.

    Article  Google Scholar 

  • Carbone, G., & Putignano, C. (2013). A novel methodology to predict sliding/rolling friction in viscoelastic materials: Theory and experiments. Accepted on Journal of Mechanics and Physics of Solids.

    Google Scholar 

  • Carbone, G., Scaraggi, M., & Tartaglino, U. (2009). Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. The European Physical Journal E-Soft Matter, 30(1), 65–74.

    Article  Google Scholar 

  • Carbone, G. (2009). A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. Journal of the Mechanics and Physics of Solids, 57(7), 1093–1102.

    Article  MATH  Google Scholar 

  • Carbone, G., & Bottiglione, F. (2008). Asperity contact theories: Do they predict linearity between contact area and load? Journal of the Mechanics and Physics of Solids, 56, 2555–2572.

    Article  MATH  Google Scholar 

  • Carbone, G., & Mangialardi, L. (2004). Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. Journal of the Mechanics and Physics of Solids, 52(6), 1267–1287.

    Article  MATH  Google Scholar 

  • Carbone, G., & Mangialardi, L. (2008a). Analysis of the adhesive contact of confined layers by using a Green’s function approach. Journal of the Mechanics and Physics of Solids, 56, 684–706.

    Google Scholar 

  • Carbone, G., & Mangialardi, L. (2008b). Analysis of adhesive contact of confined layers by using a Green’s function approach. The Journal of the Mechanics and Physics of Solids, 56(2), 684–706.

    Google Scholar 

  • Carbone, G., & Putignano, C. (2014). Rough viscoelastic sliding contact: Theory and experiments. Physical Review E, 89, 032408.

    Article  Google Scholar 

  • Carbone, G., Mangialardi, L., & Persson, B. N. J. (2004). Adhesion between a thin elastic plate, and a hard randomly rough substrate. Physical Review B, 70(12), 125–407.

    Article  Google Scholar 

  • Carbone, G., Lorenz, B., Persson, B. N. J., & Wohlers, A. (2009). Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. European Physical Journal E, 29, 275–284.

    Article  Google Scholar 

  • Carbone, G., Pierro, E., & Gorb, S. (2011). Origin of the superior adhesive performance of mushroom shaped microstructured surfaces. Soft Matter, 7(12), 5545–5552.

    Article  Google Scholar 

  • Cattaneo, C. (1938). Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rend. Accad. Naz. Lincei, 27, 342–348, 434–436, 474–478 (in Italian).

    Google Scholar 

  • Christensen, R. M. (1982). Theory of viscoelasticity. New York: Academic Press.

    Google Scholar 

  • Ciavarella, M. (1998a). The generalized Cattaneo partial slip plane contact problem I-Theory, II-Examples. International Journal of Solids and Structures, 35, 2349–2378.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciavarella, M. (1998b). Tangential loading of general three-dimensional contacts. ASME Journal of Applied Mechanics, 65, 998–1003.

    Article  Google Scholar 

  • Ciavarella, M., Delfine, V., & Demelio, G. (2006). A “re-vitalized" Greenwood and Williamson model of elastic contact between fractal surfaces. Journal of the Mechanics and Physics of Solids, 54, 2569–2591.

    Article  MATH  Google Scholar 

  • Ciavarella, M., Dibello, S., & Demelio, G. (2008). Conductance of rough random profiles. International Journal of Solids and Structures, 45, 879–893.

    Article  MATH  Google Scholar 

  • D’Amico, F., Carbone, G., Foglia, M. M., & Galietti, U. (2012). Moving cracks in viscoelastic materials: Temperature and energy-release-rate measurements. Engineering Fracture Mechanics (submitted).

    Google Scholar 

  • Dapp, W. B., Lucke, A., Persson, B. N. J., & Muser, M. H. (2012). Self-affine elastic contacts: Percolation and leakage. Physical Review Letter, 108, 244301.

    Article  Google Scholar 

  • de Vicente, J., Stokes, J. R., & Spikes, H. R. (2006). Rolling and sliding friction in compliant, lubricated contact. Proceedings Institutions of Mechanical Engineering Part J: Journal of Engineering Tribology, 220.

    Google Scholar 

  • Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53, 314–326.

    Article  Google Scholar 

  • Dieker, A. B., & Mandjes, M. (2003). On spectral simulation of fractional Brownian motion. Probability in the Engineering and Informational Sciences, 17, 417–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Eid, H., Adams, G., McGruer, N., Fortini, A., Buldyrev, S., & Srolovitz, D. (2011). A combined molecular dynamics and finite element analysis of contact and adhesion of a rough sphere and a flat surface. Tribology Transactions, 54, 920–928.

    Article  Google Scholar 

  • Elsharkawy, A. A. (1996). Visco-elastohydrodynamic lubrication of line contacts. Wear, 199, 45–53.

    Article  Google Scholar 

  • Endlein, T., Barnes, W. J. P., Samuel, D. S., Crawford, N. A., Biaw, A. B., & Grafe, U. (2013). Sticking under wet conditions: The remarkable attachment abilities of the torrent frog. Staurois guttatus, PLoS ONE, 8, e73810.

    Google Scholar 

  • Eriten, M., Polycarpou, A. A., & Bergman, L. A. (2011). Surface roughness effects on energy dissipation in fretting contact of nominally flat surfaces. ASME Journal Applied Mechanics, 78.

    Google Scholar 

  • Esfahanian, M., & Hamrock, B. J. (1991). Fluid-film lubrication regimes revisited. Tribology Transactions, 34(4), 628–632.

    Article  Google Scholar 

  • Felhõs, D., Xu, D., Schlarb, A. K., Váradi, K., & Goda, T. (2008). Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction. Express Polymer Letters, 2(3), 157–164.

    Article  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers. Wiley, Inc.

    Google Scholar 

  • Fuller, K. N. G., & Tabor, D. (1975a). The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 345, 327–342.

    Google Scholar 

  • Fuller, K. N. G., & Tabor, D. (1975b). The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 345(1642), 327–342.

    Google Scholar 

  • Geike, T., & Popov, V. L. (2007). Mapping of three-dimensional contact problems into one dimension. Physical Review E, 76, 036710.

    Article  Google Scholar 

  • Geim, A. K., Dubonos, S. V., Gricorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003a). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2, 461–463.

    Article  Google Scholar 

  • Geim, A. K., Dubonos, S. V., Gricorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003b). Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2, 461–463.

    Article  Google Scholar 

  • Greenwood, J. (1997). Adhesion of elastic spheres. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453, 1277–1297.

    Article  MathSciNet  MATH  Google Scholar 

  • Greenwood, J. A. (2006). A simplified elliptic model of rough surface contact. Wear, 261, 191–200.

    Article  Google Scholar 

  • Greenwood, J. A., & Williamson, J. B. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 295, 300–319.

    Google Scholar 

  • Greenwood, J. A., Putignano, C., & Ciavarella, M. (2011). A Greenwood & Williamson theory for line contact. Wear, 270, 332–334.

    Article  Google Scholar 

  • Grosch K. A. (1963). The relation between the friction and visco-elastic properties of rubber. Proceedings of the Royal Society of London. Series A: Mathematical and Physical, 274(1356), 21–39.

    Google Scholar 

  • Hamrock, B. J., Schmid, S. R., & Jacobson, B. O. (2004). Fundamentals of fluid film lubrication. CRC Press.

    Google Scholar 

  • Harrass, M., Friedrich, K., & Almajid, A. A. (2010). Tribological behavior of selected engineering polymers under rolling contact. Tribology International, 43, 635–646.

    Article  Google Scholar 

  • Hooke, C. J., & Huang, P. (1997). Elastohydrodynamic lubrication of soft viscoelastic materials in line contact. Proceedings Institutions of Mechanical Engineering Part J: Journal of Engineering Tribology, 211, 185.

    Article  Google Scholar 

  • Hunter, S. C. (1961). The rolling contact of a rigid cylinder with a viscoelastic half space. Transactions ASME, Series E, Journal of Applied Mechanics, 28, 611–617.

    Article  MATH  Google Scholar 

  • Hutt, W., & Persson, B. N. J. (2016). Soft matter dynamics: Accelerated fluid squeeze-out during slip. The Journal of Chemical Physics, 144, 124903.

    Article  Google Scholar 

  • Hyun, S., & Robbins, M. O. (2007). Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths. Tribology International, 40, 413–1422.

    Article  Google Scholar 

  • Hyun, S., Pei, L., Molinari, J.-F., & Robbins, M. O. (2004). Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 70, 026117.

    Article  Google Scholar 

  • Jager, J. (1998). A new principle in contact mechanics. ASME Journal of Tribology, 120, 677–684.

    Article  Google Scholar 

  • Jang, H., & Barber, J. R. (2011). Effect of phase on the frictional dissipation in systems subjected to harmonically varying loads. European Journal Mechanics A/Solids, 30, 269–274.

    Article  MATH  Google Scholar 

  • Johnson, K. L. (1961). Energy dissipation at spherical surfaces in contact transmitting oscillating forces. Journal of Mechanical Engineering Science, 3, 362–368.

    Article  Google Scholar 

  • Johnson, K. L. J. (1985). Contact mechanics. Cambridge University Press.

    Google Scholar 

  • Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 324, 301–313.

    Google Scholar 

  • Kessler, M. (2004). Advanced topics in characterization of composites. Trafford Publishing.

    Google Scholar 

  • Krick, B. A., Vail, J. R., Persson, B. N. J., & Sawyer, W. G. (2012). Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribology Letters.

    Google Scholar 

  • Le Tallec, P., & Rahler, C. (1994). Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. International Journal for Numerical Methods in Engineering, 37, 1159–1186.

    Article  MATH  Google Scholar 

  • Lorenz, B., & Persson, B. N. J. (2010a). Leak rate of seals: Effective-medium theory and comparison with experiment. European Physical Journal E, 31(2), 159–167.

    Article  Google Scholar 

  • Lorenz, B., & Persson, B. N. J. (2010b). Time-dependent fluid squeeze-out between solids with rough surfaces. European Physical Journal E, 32(3), 281–290.

    Article  Google Scholar 

  • Lorenz, B., & Persson, B. N. J. (2010c). On the dependence of the leak rate of seals on the skewness of the surface height probability distribution. EPL, 90, 38002.

    Article  Google Scholar 

  • Lorenz, B., & Persson, B. N. J. (2009). Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. Journal of Physics: Condensed Matter, 21(1), 015003.

    Google Scholar 

  • Lorenz, B., Persson, B. N. J., Dieluweit, S., & Tada, T. (2011). Rubber friction: Comparison of theory with experiment. European Physical Journal E, 34, 129.

    Article  Google Scholar 

  • Lorenz, B., Carbone, G., & Schulze, C. (2010). Average separation between solids in rough contact: Comparison between theoretical predictions and experiments. Wear, 268(7–8), 984–990.

    Article  Google Scholar 

  • Luan, B., & Robbins, M. O. (2009). Hybrid atomistic/continuum study of contact and friction between rough solids. Tribology Letters, 36, 1–16.

    Article  Google Scholar 

  • Luan, B. Q., Hyun, S., Molinari, J. F., Bernstein, N., & Robbins, M. O. (2006). Multiscale modeling of two-dimensional contacts. Physical Review E, 74, 046710.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: W. H. Freeman and company.

    MATH  Google Scholar 

  • Manners, W., & Greenwood, J. A. (2006). Some observations on Persson’s diffusion theory of elastic contact. Wear, 261, 600–610.

    Article  Google Scholar 

  • Martina, D., Creton, C., Damman, P. M., Jeusette, & Lindner. A., (2012). Adhesion of soft viscoelastic adhesives on periodic rough surfaces. Soft Matter, 8(19), 5350–5357.

    Google Scholar 

  • Marx, N., Guegan, J., & Spikes, H. A. (2016). Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribology International, 99, 267–277.

    Article  Google Scholar 

  • Maugis, D. (1992). Adhesion of spheres: The JKR-DMT transition using a dugdale model. Journal of Colloid and Interface Science, 150, 243–269.

    Article  Google Scholar 

  • Maugis, D. (1996). On the contact and adhesion of rough surfaces. Journal of Adhesion Science and Technology, 10, 161–175.

    Article  Google Scholar 

  • Medina, S., & Dini, D. (2014). A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. International Journal of Solids and Structures, 51, 2620–2632.

    Article  Google Scholar 

  • Mindlin, R. D. (1949). Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16, 259–268.

    MathSciNet  MATH  Google Scholar 

  • Mser, M. H., Dapp, W. B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, A. A., et al. (2017). Meeting the contact-mechanics challenge. Tribology Letters, 65, 118.

    Article  Google Scholar 

  • Muller, V., Yushchenko, V., & Derjaguin, B. (1980). On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. Journal of Colloid and Interface Science, 77, 91–101.

    Article  Google Scholar 

  • Munisamy, R. L., Hills, D. A., & Nowell, D. (1994). Static axisymmetrical Hertzian contacts subject to shearing forces. ASME Journal of Applied Mechanics, 61, 278–283.

    Article  MATH  Google Scholar 

  • Nackenhorst, U. (2004). The ALE-formulation of bodies in rolling contact Theoretical foundations and finite element approach. Computer Methods in Applied Mechanics and Engineering, 193, 4299–4322.

    Article  MathSciNet  MATH  Google Scholar 

  • Nasdala, L., Kaliske, M., Becker, A., & Rothert, H. (1998). An efficient viscoelastic formulation for steady-state rolling structures. Computational Mechanics, 22, 395–403.

    Article  MATH  Google Scholar 

  • Nowell, D., Dini, D., & Hills, D. A. (2006). Recent developments in the understanding of fretting fatigue. Engineering Fracture Mechanics, 73, 207–222.

    Article  Google Scholar 

  • O’Boy, D. J., & Dowling, A. P. (2009). Tyre/road interaction noise–A 3D viscoelastic multilayer model of a tyre belt. Journal of Sound and Vibration, 322(4–5), 829–850.

    Article  Google Scholar 

  • Olaru, D. N., Stamate, C., & Prisacaru, G. (2009). Rolling friction in a micro tribosystem. Tribology Letters, 35, 205–210.

    Article  Google Scholar 

  • Padovan, J. (1987). Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-I. Theory. Computers & Structures, 27(2), 249–257.

    Article  MATH  Google Scholar 

  • Padovan, J., & Paramadilok, O. (1984). Transient and steady state viscoelastic rolling contact. Computers & Structures, 20, 545–553.

    Article  MATH  Google Scholar 

  • Padovan, J., Kazempour, A., Tabaddor, F., & Brockman, B. (1992). Alternative formulations of rolling contact problems. Finite Elements in Analysis and Design, 11, 275–284.

    Article  Google Scholar 

  • Paggi, M., & Barber, J. R. (2011). Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 54(21–22), 4664–4672.

    Article  MATH  Google Scholar 

  • Paggi, M., & Ciaveralla, M. (2010). The coefficient of proportionality k between real contact area and load, with new asperity models. Wear, 268, 1020–1029.

    Article  Google Scholar 

  • Pandey, A., Karpitschka, S., Venner, C. H., & Snoeijer, J. H. (2016). Lubrication of soft viscoelastic solids. Journal of Fluid Mechanics, 799, 433–447.

    Article  MathSciNet  Google Scholar 

  • Panek, C., & Kalker, J. J. (1980). Three-dimensional contact of a rigid roller traversing a viscoelastic half space. IMA Journal of Applied Mathematics, 26, 299–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Pastewka, L., & Robbins, M. O. (2014). Contact between rough surfaces and a criterion for macroscopic adhesion. Proceedings of the National Academy of Sciences, 111, 3298–3303.

    Article  Google Scholar 

  • Persson, B. N. J. (2006a). Contact mechanics for randomly rough surfaces. Surface Science Reports, 61, 201–227.

    Article  Google Scholar 

  • Persson, B. N. J. (2006b). Rubber friction: Role of the flash temperature. Journal of Physics Condensed Matter, 18(32), 7789–7823.

    Article  Google Scholar 

  • Persson, B. N. J., & Brener, E. A. (2005). Crack propagation in viscoelastic solids. Physical Review E, 71(3), 036123.

    Article  Google Scholar 

  • Persson, B. N. J., Albohr, O., Heinrich, G., & Ueba, H. (2005). Crack propagation in rubber-like materials. Journal of Physics-Condensed Matter, 17(44), R1071–R114.

    Article  Google Scholar 

  • Persson, B. N. J. (2001). Theory of rubber friction and contact mechanics. Journal of Chemical Physics, 115, 3840–3861.

    Article  Google Scholar 

  • Persson, B. N. J. (2010). Rolling friction for hard cylinder and sphere on viscoelastic solid. European Physical Journal E, 33, 327–333.

    Article  Google Scholar 

  • Persson, B. N., & Scaraggi, M. (2014). Theory of adhesion: Role of surface roughness. The Journal of Chemical Physics, 141, 124701.

    Article  Google Scholar 

  • Persson, B. N., & Tosatti, E. (2001). The effect of surface roughness on the adhesion of elastic solids. The Journal of Chemical Physics, 115, 5597–5610.

    Article  Google Scholar 

  • Persson, B. N. J., Bucher, F., & Chiaia, B. (2002). Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 65, 184106.

    Article  Google Scholar 

  • Persson, B. N. J., Lorenz, B., & Volokitin, A. I. (2010). Heat transfer between elastic solids with randomly rough surfaces. European Physics Journal E, 31, 3–24.

    Article  Google Scholar 

  • Putignano, C., Afferrante, L., Carbone, G., & Demelio, G. (2012a). The influence of the statistical properties of self-affine surfaces in elastic contact: A numerical investigation. Journal of Mechanics and Physics of Solids, 60(5), 973–982.

    Article  Google Scholar 

  • Putignano, C., Afferrante, L., Carbone, G., & Demelio, G. (2012b). A new efficient numerical method for contact mechanics of rough surfaces. International Journal of Solids and Structures, 49(2), 338–343.

    Article  Google Scholar 

  • Putignano, C., & Dini, D. (2017). Soft matter lubrication: Does solid viscoelasticity matter? ACS Applied Materials & Interfaces, 9(48), 42287–42295.

    Article  Google Scholar 

  • Putignano, C., Ciavarella, M., & Barber, J. R. (2011). Frictional energy dissipation in contact of nominally flat rough surfaces under harmonically varying load. Journal of Mechanics and Physics of Solids, 59(12), 2442–2454.

    Article  Google Scholar 

  • Putignano, C., Reddyhoff, T., Dini, D., & Carbone, G. (2013). The effect of viscoelasticity in rolling contacts: A combined experimental and numerical investigation. Tribology Letters, 51(1), 105–113.

    Article  Google Scholar 

  • Putignano, C., Le Rouzic, J., Reddyhoff, T., Carbone, G., & Dini, D. (2014). A theoretical and experimental study of viscoelastic rolling contacts incorporating thermal effects. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(10), 1112–1121.

    Article  Google Scholar 

  • Putignano, C., Carbone, G., & Dini, D. (2015). Mechanics of rough contacts in elastic and viscoelastic thin layers. International Journal of Solids and Structures, 69, 507–517.

    Google Scholar 

  • Rao, J. S. (2011). Finite element methods, history of mechanism and machine. Science, 20, 141–183.

    Google Scholar 

  • Sauer, R. A., & Wriggers, P. (2009). Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale. Computer Methods in Applied Mechanics and Engineering, 198, 3871–3883.

    Article  MathSciNet  MATH  Google Scholar 

  • Scaraggi M., Putignano C., & Carbone G. (2013). Elastic contact of rough surfaces: A simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear, 297 (1–2, 5), 811–817.

    Google Scholar 

  • Scaraggi, M., Carbone, G., Persson, B. N. J., & Dini, D. (2011). Mixed lubrication in soft contacts: A novel homogenized approach. Part I-Theory. Soft Matter, 7(21), 1039510406.

    Google Scholar 

  • Scaraggi, M., Carbone, G., & Dini, D. (2011). Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribology Letters, 43(2), 169–174.

    Article  Google Scholar 

  • Schenk, O., & Gärtnerc, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3), 475–487.

    Article  Google Scholar 

  • Selway, N., Chana, V., & Stokes, J. R. (2017). Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts. Soft Matter, 8.

    Google Scholar 

  • Sevostianov, I., & Kachanov, M. (2008). Normal and tangential compliances of interface of rough surfaces with contacts of elliptic shape. International Journal of Solids and Structures, 45, 2723–2736.

    Article  MATH  Google Scholar 

  • Snoeijer, J. H., Eggers, J., & Venner, C. H. (2013). Similarity theory of lubricated Hertzian contacts. Physics of Fluids, 25(10), 101705.

    Article  Google Scholar 

  • Stupkiewicz, S., Lengiewicz, J., Sadowski, P., & Kucharski, S. (2016). Finite deformation effects in soft elastohydrodynamic lubrication problems. Tribology International, 511–522, 93.

    Google Scholar 

  • Tabor, D. (1977). Surface forces and surface interactions. Journal of Colloid and Interface Science, 58, 2–13.

    Article  Google Scholar 

  • Thomas, T. R. (1982). Rough surfaces (chap. 8). New York: Longman Group Limited.

    Google Scholar 

  • Vakis, A. I., Yastrebov, V. A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125(2018), 169–199.

    Article  Google Scholar 

  • Venner, C. H., & Lubrecht, A. A. (2000). Multilevel methods in lubrication. Elsevier Tribology Series (Ed. D. Dowson et al., Vol. 37).

    Google Scholar 

  • Vollebregt, E. A. H. (2009). User guide for contact, J.J. Kalker’s variational contact model. Technical Report TR09-03, version 1.18.

    Google Scholar 

  • Wentzel, H. (2006). Modelling of frictional joints in dynamically loaded structures: A review. Technical Report, KTH Solid mechanics, Royal Institute of Technology www.old.hallf.kth.se/forskning/publikationer/rapport_419.pdfS.

  • Williams, J. R., & O’Connor, R. (1999). Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4), 279–304.

    Article  MathSciNet  Google Scholar 

  • Wriggers, P. (2002). Computational contact mechanics. Chichester: Wiley & Sons Ltd.

    MATH  Google Scholar 

  • Yang, C., & Persson, B. N. J. (2008). Molecular dynamics study of contact mechanics: Contact area and interfacial separation from small to full contact. Physical Review Letters, 100, 024303.

    Article  Google Scholar 

  • Yang, C., Tartaglino, U., & Persson, B. N. J. (2006). A multiscale molecular dynamics approach to contact mechanics. The European Physical Journal E Soft-Matter, 19(1), 47–58.

    Article  Google Scholar 

  • Yoneyama, S., Gotoh, J., & Takashi, M. (2010). Experimental analysis of rolling contact stresses in a viscoelastic strip, 40(2), 203–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Dini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Putignano, C., Dini, D. (2020). Contact Mechanics of Rubber and Soft Matter. In: Paggi, M., Hills, D. (eds) Modeling and Simulation of Tribological Problems in Technology. CISM International Centre for Mechanical Sciences, vol 593. Springer, Cham. https://doi.org/10.1007/978-3-030-20377-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20377-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20376-4

  • Online ISBN: 978-3-030-20377-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics