Skip to main content

A Deep Neural Network for Manifold-Valued Data with Applications to Neuroimaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Developing deep neural networks (DNNs) for manifold-valued data sets has gained significant interest of late in the deep learning research community. Examples of manifold-valued data in the medical imaging domain include (but are not limited to) diffusion magnetic resonance imaging, tensor-based morphometry, shape analysis and more. In this paper we present a novel theoretical framework for DNNs to cope with manifold-valued data inputs, taking inspiration from the convolutional neural network (CNN) architecture. We call our network the ManifoldNet.

Analogous to vector spaces where convolutions are equivalent to computing weighted means, manifold-valued data convolutions can be defined using the weighted Fréchet Mean (wFM). To this end, we present a provably convergent recursive algorithm for computation of the wFM of the given data, where the weights are to be learned. Further, we prove that the proposed wFM layer achieves a contraction mapping and hence the ManifoldNet need not have additional non-linear ReLU units used in standard CNNs to achieve a contraction mapping.

Analogous to the equivariance of convolution in Euclidean space to translations, we prove that the wFM is equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. This equivariance property facilitates weight sharing within the network. We present experiments using the ManifoldNet framework to achieve regression between diffusion MRI scans of Parkinson Disease (PD) patients and clinical information such as their Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) scores. In another experiment, we present results of finding group differences based on brain connectivity at the fiber bundle level between PD and controls.

This research was in part funded by the NSF grants IIS-1525431 and IIS-1724174.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsari, B.: Riemannian \({L}^p\) center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(02), 655 (2011). https://doi.org/10.1090/S0002-9939-2010-10541-5, http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10541-5

    Article  MathSciNet  Google Scholar 

  2. Archer, D., Vaillancourt, D., Coombes, S.: A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb. Cortex 28, 1–15 (2017). https://doi.org/10.1093/cercor/bhx066

    Article  Google Scholar 

  3. Banerjee, M., Chakraborty, R., Ofori, E., Okun, M.S., Viallancourt, D.E., Vemuri, B.C.: A nonlinear regression technique for manifold valued data with applications to medical image analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4424–4432 (2016)

    Google Scholar 

  4. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007). https://doi.org/10.1016/j.neuroimage.2006.09.018, http://www.sciencedirect.com/science/article/pii/S1053811906009360

    Article  Google Scholar 

  5. Chakraborty, R., et al.: Statistical Recurrent Models on Manifold valued Data. ArXiv e-prints, May 2018

    Google Scholar 

  6. Chakraborty, R., Vemuri, B.C., et al.: Statistics on the Stiefel manifold: theory and applications. Ann. Stat. 47(1), 415–438 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chavel, I.: Riemannian Geometry: A Modern Introduction, vol. 98. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  8. Cheng, G., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Non-rigid registration of high angular resolution diffusion images represented by Gaussian mixture fields. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 190–197. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_24

    Chapter  Google Scholar 

  9. Dummit, D.S., Foote, R.M.: Abstract Algebra, vol. 3. Wiley, Hoboken (2004)

    Google Scholar 

  10. Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry. NeuroImage 56(3), 1181–1201 (2011)

    Article  Google Scholar 

  11. Groisser, D.: Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv. Appl. Math. 33(1), 95–135 (2004). https://doi.org/10.1016/j.aam.2003.08.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Z., Van Gool, L.J.: A Riemannian network for SPD matrix learning. In: AAAI, vol. 1, p. 3 (2017)

    Google Scholar 

  13. Huang, Z., Wu, J., Van Gool, L.: Building deep networks on Grassmann manifolds. arXiv preprint arXiv:1611.05742 (2016)

  14. Kendall, W.S.: Probability, convexity, and harmonic maps with small image. I. Uniqueness and finite existence. Proc. London Math. Soc. 3(2), 371–406 (1990)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012). https://doi.org/10.1016/j.protcy.2014.09.007

    Article  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  17. Lim, Y., Pálfia, M.: Weighted inductive means. Linear Algebra Appl. 453, 59–83 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mallat, S.: Understanding deep convolutional networks. Philos. Trans. A 374, 20150203 (2016). https://doi.org/10.1098/rsta.2015.0203, http://arxiv.org/abs/1601.04920

    Article  Google Scholar 

  19. Manton, J.H.: A globally convergent numerical algorithm for computing the centre of mass on compact lie groups. In: 8th Control, Automation, Robotics and Vision Conference, ICARCV 2004, vol. 3, pp. 2211–2216. IEEE (2004)

    Google Scholar 

  20. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l’I. H. P. 10(4), 215–310 (1948)

    Google Scholar 

  21. Ramaker, C., Marinus, J., Stiggelbout, A.M., Van Hilten, B.J.: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov. Disorders: official J. Mov. Disorder Soc. 17(5), 867–876 (2002)

    Article  Google Scholar 

  22. Salehian, H., Chakraborty, R., Ofori, E., Vaillancourt, D., Vemuri, B.C.: An efficient recursive estimator of the Fréchet mean on a hypersphere with applications to medical image analysis. Mathematical Foundations of Computational Anatomy (2015)

    Google Scholar 

  23. Triacca, U.: Measuring the distance between sets of ARMA models. Econometrics 4, 32 (2016). https://doi.org/10.3390/econometrics4030032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba C. Vemuri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 72 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C. (2019). A Deep Neural Network for Manifold-Valued Data with Applications to Neuroimaging. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics