Skip to main content

A Cross-Center Smoothness Prior for Variational Bayesian Brain Tissue Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Suppose one is faced with the challenge of tissue segmentation in MR images, without annotators at their center to provide labeled training data. One option is to go to another medical center for a trained classifier. Sadly, tissue classifiers do not generalize well across centers due to voxel intensity shifts caused by center-specific acquisition protocols. However, certain aspects of segmentations, such as spatial smoothness, remain relatively consistent and can be learned separately. Here we present a smoothness prior that is fit to segmentations produced at another medical center. This informative prior is presented to an unsupervised Bayesian model. The model clusters the voxel intensities, such that it produces segmentations that are similarly smooth to those of the other medical center. In addition, the unsupervised Bayesian model is extended to a semi-supervised variant, which needs no visual interpretation of clusters into tissues.

W. M. Kouw—Supported by a contribution from the Niels Stensen Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)

    Article  Google Scholar 

  2. Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25(11), 1410–1416 (2006)

    Article  Google Scholar 

  3. Benoit-Cattin, H., Collewet, G., Belaroussi, B., Saint-Jalmes, H., Odet, C.: The SIMRI project: a versatile and interactive MRI simulator. J. Magn. Reson. 173(1), 97–115 (2005)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Blaiotta, C., Cardoso, M.J., Ashburner, J.: Variational inference for medical image segmentation. Comput. Vis. Image Underst. 151, 14–28 (2016)

    Article  Google Scholar 

  6. Blei, D.M., Jordan, M.I., et al.: Variational inference for dirichlet process mixtures. Bayesian Anal. 1(1), 121–143 (2006)

    Article  MathSciNet  Google Scholar 

  7. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  8. Finkel, J.R., Manning, C.D.: Hierarchical bayesian domain adaptation. In: Conference of the North American Chapter of the Association for Computational Linguistics, pp. 602–610 (2009)

    Google Scholar 

  9. Ikram, M.A., et al.: The Rotterdam scan study: design update 2016 and main findings. Eur. J. Epidemiol. 30(12), 1299–1315 (2015)

    Article  Google Scholar 

  10. Kouw, W.M., Loog, M.: A review of single-source unsupervised domain adaptation. arXiv:1901.05335 (2019)

  11. Krijthe, J.H., Loog, M.: Implicitly constrained semi-supervised linear discriminant analysis. In: International Conference on Pattern Recognition, pp. 3762–3767 (2014)

    Google Scholar 

  12. Liu, J., Zhang, H.: Image segmentation using a local GMM in a variational framework. J. Math. Imaging Vis. 46(2), 161–176 (2013)

    Article  MathSciNet  Google Scholar 

  13. McGrory, C.A., Titterington, D.M., Reeves, R., Pettitt, A.N.: Variational Bayes for estimating the parameters of a hidden Potts model. Stat. Comput. 19(3), 329 (2009)

    Article  MathSciNet  Google Scholar 

  14. Mendrik, A.M., et al.: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput. Intell. Neurosci. 2015, 1 (2015)

    Article  Google Scholar 

  15. Nasios, N., Bors, A.G.: Variational learning for Gaussian mixture models. IEEE Trans. Syst. Man Cybern. 36(4), 849–862 (2006)

    Article  Google Scholar 

  16. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  17. Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer learning. In: International Conference on Machine Learning, pp. 713–720 (2006)

    Google Scholar 

  18. Rohlfing, T.: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imaging 31(2), 153–163 (2012)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  21. Van Opbroek, A., Ikram, M.A., Vernooij, M.W., De Bruijne, M.: Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. Med. Imaging 34(5), 1018–1030 (2015)

    Article  Google Scholar 

  22. Wang, C., Komodakis, N., Paragios, N.: Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst. 117(11), 1610–1627 (2013)

    Article  Google Scholar 

  23. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlomethods: A Mathematical Introduction, vol. 27. Springer, Heidelberg (2012)

    Google Scholar 

  24. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter M. Kouw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kouw, W.M., Ørting, S.N., Petersen, J., Pedersen, K.S., de Bruijne, M. (2019). A Cross-Center Smoothness Prior for Variational Bayesian Brain Tissue Segmentation. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics