Skip to main content

Diffeomorphic Medial Modeling

  • Conference paper
  • First Online:
  • 5517 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Abstract

Deformable shape modeling approaches that describe objects in terms of their medial axis geometry (e.g., m-reps [10]) yield rich geometrical features that can be useful for analyzing the shape of sheet-like biological structures, such as the myocardium. We present a novel shape analysis approach that combines the benefits of medial shape modeling and diffeomorphometry. Our algorithm is formulated as a problem of matching shapes using diffeomorphic flows under constraints that approximately preserve medial axis geometry during deformation. As the result, correspondence between the medial axes of similar shapes is maintained. The approach is evaluated in the context of modeling the shape of the left ventricular wall from 3D echocardiography images.

This work is supported by NIH grants AG056014, EB017255, HL103723, HL141643.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A property of \(\mathcal{O}\) is considered “generic” if it is invariant to small smooth perturbations of \(\mathcal{O}\). For example, the centers of the MIBs in a perfect cylinder form a line, but a small perturbation breaks this perfect symmetry.

References

  1. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Shape deformation analysis from the optimal control viewpoint. Journal de mathématiques pures et appliquées 104(1), 139–178 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applicationsa l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966)

    Article  MathSciNet  Google Scholar 

  3. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recogn. 10(3), 167–180 (1978)

    Article  Google Scholar 

  4. Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets, medial axes, and shocks. Int. J. Comput. Vis. 54(1–3), 143–157 (2003)

    Article  Google Scholar 

  5. Hong, J., Vicory, J., Schulz, J., Styner, M., Marron, J.S., Pizer, S.M.: Non-euclidean classification of medically imaged objects via S-reps. Med. Image Anal. 31, 37–45 (2016)

    Article  Google Scholar 

  6. Hong, S., Fishbaugh, J., Gerig, G.: 4D continuous medial representation by geodesic shape regression. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1014–1017. IEEE (2018)

    Google Scholar 

  7. Loop, C., DeRose, T.: Generalized B-spline surfaces of arbitrary topology. In: Computer Graphics (ACM SIGGRAPH Proceedings), pp. 347–356 (1990)

    Article  Google Scholar 

  8. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  9. Näf, M., Kübler, O., Kikinis, R., Shenton, M., Székely, G.: Characterization and recognition of 3D organ shape in medical image analysis using skeletonization. In: Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 139–150. IEEE Computer Society (1996)

    Google Scholar 

  10. Pizer, S.M., et al.: Deformable m-reps for 3D medical image segmentation. Int. J. Comput. Vis. 55(2), 85–106 (2003)

    Article  Google Scholar 

  11. Sun, H., Frangi, A.F., Wang, H., Sukno, F.M., Tobon-Gomez, C., Yushkevich, P.A.: Automatic cardiac MRI segmentation using a biventricular deformable medial model. Med. Image Comput. Comput. Assist. Interv. 13(Pt 1), 468–475 (2010)

    Google Scholar 

  12. Yushkevich, P.A., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(2), 1547–1564 (2006)

    Article  Google Scholar 

  13. Yushkevich, P.A., Zhang, H.G.: Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the blum skeleton. Inf. Process. Med. Imaging 23, 280–291 (2013)

    Article  Google Scholar 

  14. Zorin, D., Schröder, P., Derose, T., Kobbelt, L., Levin, A., Sweldens, W.: Subdivision for modeling and animation. In: SIGGRAPH Course Notes. ACM, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Yushkevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yushkevich, P.A. et al. (2019). Diffeomorphic Medial Modeling. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics