Skip to main content

Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Breast cancer and specifically metastatic breast cancer (mBC) constitutes a major health burden worldwide with the highest number of cancer-related mortality among women across the globe. Despite having similar subtypes, breast cancer patients present with a spectrum of aggressiveness and responsiveness to therapy due to cancer heterogeneity. Drug resistance and metastasis contribute to therapy failure and cancer recurrence. Research in the past two decades has focused on microRNAs (miRNAs), small endogenous non-coding RNAs, as active players in tumorigenesis, therapy resistance and metastasis and as novel non-invasive cancer biomarkers. This is due to their unique dysregulated signatures throughout tumor progression and their tumor suppressive/oncogenic roles. Identifying miRNAs signatures capable of predicting therapy response and metastatic onset in breast cancer patients might improve prognosis and offer prolonged median and relapse-free survival rate. Despite the growing reports on miRNAs as novel non-invasive biomarkers in breast cancer and as regulators of breast cancer drug resistance or metastasis, the quest on whether some miRNAs are capable of regulating both simultaneously is inevitable, yet understudied. This chapter will review the role of miRNAs as biomarkers and as active players in inducing/reversing anti-cancer drug resistance, driving/blocking metastasis or regulating both simultaneously in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BC:

Breast cancer

CTCs:

Circulating tumor cells

DCIS:

Ductal carcinoma in situ

DFS:

Disease-free survival

ER:

Estrogen receptor

mBC:

Metastatic breast cancer

MDR:

Multidrug resistance

microRNAs:

miRNAs or miRs

OS:

Overall survival

PFS:

Progression-free survival

TNBC:

Triple negative breast cancer

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Zhang X-S, Zhang S (2014) Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep 4:4002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24:S26–S35

    Article  PubMed  Google Scholar 

  5. Spitale A, Mazzola P, Soldini D, Mazzucchelli L, Bordoni A (2008) Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann Oncol 20(4):628–635

    Article  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharyya M, Nath J, Bandyopadhyay S (2015) MicroRNA signatures highlight new breast cancer subtypes. Gene 556(2):192–198

    Article  CAS  PubMed  Google Scholar 

  8. Adams BD, Wali VB, Cheng CJ, Inukai S, Booth CJ, Agarwal S et al (2016) miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res 76(4):927–939

    Article  CAS  PubMed  Google Scholar 

  9. Fidler IJ (2003) The pathogenesis of cancer metastasis: the seed and soil hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  10. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273

    Article  CAS  PubMed  Google Scholar 

  11. McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34(1):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nassar FJ, Nasr R, Talhouk R (2017) MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 172:34–49

    Article  CAS  PubMed  Google Scholar 

  13. Shao Y, Sun X, He Y, Liu C, Liu H (2015) Elevated levels of serum tumor markers CEA and CA15-3 are prognostic parameters for different molecular subtypes of breast cancer. PLoS One 10(7):e0133830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dobbe E, Gurney K, Kiekow S, Lafferty JS, Kolesar JM (2008) Gene-expression assays: new tools to individualize treatment of early-stage breast cancer. Am J Health-Syst Pharm 65(1):23–28

    Article  CAS  PubMed  Google Scholar 

  15. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J et al (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res 5(10):2929

    CAS  PubMed  PubMed Central  Google Scholar 

  16. BoydNF G (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236

    Article  Google Scholar 

  17. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H (2012) The relationship of mammographic density and age: implications for breast cancer screening. Am J Roentgenol 198(3):W292–W2W5

    Article  Google Scholar 

  18. Singh SK, Pal Bhadra M, Girschick HJ, Bhadra U (2008) MicroRNAs–micro in size but macro in function. FEBS J 275(20):4929–4944

    Article  CAS  PubMed  Google Scholar 

  19. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  20. Kutanzi KR, Yurchenko OV, Beland FA, Vasyl’ FC, Pogribny IP (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics 2(2):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DRF (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137(1):143–151

    Article  CAS  PubMed  Google Scholar 

  22. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  23. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15(1):21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Li J, Ding X, He M, Cheng S-Y (2010) microRNA and cancer. AAPS J 12(3):309–317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E et al (2016) The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 7(31):49859

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chim SS, Shing TK, Hung EC, Leung T-Y, Lau T-K, Chiu RW et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54(3):482–490

    Article  CAS  PubMed  Google Scholar 

  28. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    Article  PubMed  Google Scholar 

  29. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lima LG, Chammas R, Monteiro RQ, Moreira MEC, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283(2):168–175

    Article  CAS  PubMed  Google Scholar 

  31. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merkerova M, Vasikova A, Belickova M, Bruchova H (2010) MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 19(1):17–26

    Article  CAS  PubMed  Google Scholar 

  33. Wu K, Feng J, Xing F, Liu Y, Sharma S, Watabe K (2017) Exosomal miR-19a: a novel communicator between cancer cell and osteoclast in osteolytic bone metastasis of breast cancer. AACR 77:4940–4940

    Google Scholar 

  34. Zhong S, Chen X, Wang D, Zhang X, Shen H, Yang S et al (2016) MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 7(15):19601–19609

    Article  PubMed  PubMed Central  Google Scholar 

  35. Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L et al (2014) miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124(12):5109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma R, Jiang T, Kang X (2012) Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Z, Peng Z, Gu S, Zheng J, Feng D, Qin Q et al (2017) Global analysis of miRNA–mRNA interaction network in breast cancer with brain metastasis. Anticancer Res 37(8):4455–4468

    CAS  PubMed  Google Scholar 

  38. Mohammadi-Yeganeh S, Paryan M, Arefian E, Vasei M, Ghanbarian H, Mahdian R et al (2016) MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumor Biol 37(7):8993–9000

    Article  CAS  Google Scholar 

  39. Madhavan D, Peng C, Wallwiener M, Zucknick M, Nees J, Schott S et al (2016) Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 37(5):461–470

    Article  CAS  PubMed  Google Scholar 

  40. Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, Malamos N et al (2016) Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 62(7):1002–1011

    Article  CAS  PubMed  Google Scholar 

  41. Peng F, Tang H, Liu P, Shen J, Guan X, Xie X et al (2017) Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis. Sci Rep 7:9022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Teoh S, Das S (2017) The role of MicroRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr Pharm Des 23(12):1845

    Article  CAS  PubMed  Google Scholar 

  43. Miao Y, Zheng W, Li N, Su Z, Zhao L, Zhou H et al (2017) MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci Rep 7:41942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roth C, Rack B, Müller V, Janni W, Pantel K, Schwarzenbach H (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12(6):R90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen W, Cai F, Zhang B, Barekati Z, Zhong XY (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumor Biol 34(1):455–462

    Article  CAS  Google Scholar 

  47. Schwarzenbach H, Milde-Langosch K, Steinbach B, Müller V, Pantel K (2012) Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat 134(3):933–941

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad A, Sethi S, Chen W, Ali-Fehmi R, Mittal S, Sarkar FH (2014) Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. Am J Transl Res 6(4):384

    PubMed  PubMed Central  Google Scholar 

  49. Zhao F, Hu G, Wang X, Zhang X, Zhang Y, Yu Z (2012) Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res 40(3):859–866

    Article  CAS  PubMed  Google Scholar 

  50. Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18(21):5972–5982

    Article  CAS  PubMed  Google Scholar 

  51. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H (2013) Deregulated serum concentrations of circulating cell–free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem 59(10):1489–1496

    Article  CAS  PubMed  Google Scholar 

  53. Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I et al (2017) Beyond circulating microRNA biomarkers: urinary microRNAs in ovarian and breast cancer. Tumor Biol 39(5):1010428317695525

    Article  Google Scholar 

  54. Zheng R, Pan L, Gao J, Ye X, Chen L, Zhang X et al (2015) Prognostic value of miR-106b expression in breast cancer patients. J Surg Res 195(1):158–165

    Article  CAS  PubMed  Google Scholar 

  55. Sahlberg KK, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale A-L et al (2015) A serum microRNA signature predicts tumor relapse and survival in triple negative breast cancer patients. Clin Cancer Res 21:1207–1214

    Article  CAS  Google Scholar 

  56. Halvorsen AR, Helland Å, Gromov P, Wielenga VT, Talman MLM, Brunner N et al (2017) Profiling of microRNAs in tumor interstitial fluid of breast tumors–a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol 11(2):220–234

    Article  CAS  PubMed  Google Scholar 

  57. Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L et al (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160(3):439–446

    Article  PubMed  CAS  Google Scholar 

  58. Guestini F, McNamara KM, Ishida T, Sasano H (2016) Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets 20(6):705–720

    Article  CAS  PubMed  Google Scholar 

  59. Chen X, Lu P, Wang D-D, Yang S-J, Wu Y, Shen H-Y et al (2016) The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues. Gene 595(2):221–226

    Article  CAS  PubMed  Google Scholar 

  60. Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S et al (2015) Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 15:193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    Article  PubMed  CAS  Google Scholar 

  62. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13(3):57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ellis LM, Hicklin DJ (2009) Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res 15(24):7471–7478

    Article  CAS  PubMed  Google Scholar 

  64. Sorrentino A, Liu C-G, Addario A, Peschle C, Scambia G, Ferlini C (2008) Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111(3):478–486

    Article  CAS  PubMed  Google Scholar 

  65. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9:3126–3136

    Article  CAS  PubMed  Google Scholar 

  66. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K et al (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79(6):817–824

    Article  CAS  PubMed  Google Scholar 

  67. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Vasyl’ FC et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7(7):2152–2159

    Article  CAS  PubMed  Google Scholar 

  68. Yang S-J, Wang D-D, Li J, Xu H-Z, Shen H-Y, Chen X et al (2017) Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 623:5–14

    Article  CAS  PubMed  Google Scholar 

  69. Wu Q, Yang Z, Nie Y, Shi Y, Fan D (2014) Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 347(2):159–166

    Article  CAS  PubMed  Google Scholar 

  70. Zhao J-J, Lin J, Yang H, Kong W, He L, Ma X et al (2008) MicroRNA-221/222 negatively regulates estrogen receptorα and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lau L-Y, 劉麗儀 (2011) Identification of microRNAs associated with tamoxifen resistance in breast cancer. HKU Theses Online (HKUTO)

    Google Scholar 

  72. Hong L, Han Y, Zhang Y, Zhang H, Zhao Q, Wu K et al (2013) MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin Ther Targets 17(9):1073–1080

    Article  CAS  PubMed  Google Scholar 

  73. Wang Z-X, Lu B-B, Wang H, Cheng Z-X, Yin Y-M (2011) MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 42(4):281–290

    Article  CAS  PubMed  Google Scholar 

  74. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K (2012) Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31(2):149–160

    Article  CAS  PubMed  Google Scholar 

  75. Mei M, Ren Y, Zhou X, Yuan X-B, Han L, Wang G-X et al (2010) Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 9(1):77–86

    Article  CAS  PubMed  Google Scholar 

  76. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Xi Y et al (2010) Mir-125b confers the resistance of cancer cells to Taxol through suppression of Bak1. AACR 70, abstract 2109

    Google Scholar 

  77. Luqmani YA, Alam-Eldin N (2016) Overcoming resistance to endocrine therapy in breast cancer: new approaches to a nagging problem. Med Princ Pract 25(Suppl. 2):28–40

    Article  PubMed  PubMed Central  Google Scholar 

  78. Joshi T, Elias D, Stenvang J, Alves CL, Teng F, Lyng MB et al (2016) Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget 7(35):57239–57253

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sachdeva M, Mo Y-Y (2010) miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res 2(2):170

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rehman SK, Huang W-C, Yu D (2010) MiR-21 upregulation in breast cancer cells leads to PTEN loss and Herceptin resistance. AACR 70, abstract 4033

    Google Scholar 

  81. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J et al (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286(21):19127–19137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282(2):1479–1486

    Article  CAS  PubMed  Google Scholar 

  83. del Pilar Camacho-Leal M, Sciortino M, Cabodi S (2017) ErbB2 receptor in breast cancer: implications in cancer cell migration, invasion and resistance to targeted therapy. In: Breast cancer-from biology to medicine. InTech

    Google Scholar 

  84. Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neureceptor status in breast cancer. Breast Cancer Res 11(3):R27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5(1):1–14

    Article  CAS  Google Scholar 

  86. Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N et al (2017) MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 8(8):e2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anastasov N, Höfig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N et al (2012) Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol 7(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liang Z, Ahn J, Guo D, Votaw JR, Shim H (2013) MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res 30(4):1008–1016

    Article  CAS  PubMed  Google Scholar 

  89. Raza U, Zhang JD, Şahin Ö (2014) MicroRNAs: master regulators of drug resistance, stemness, and metastasis. J Mol Med 92(4):321–336

    Article  CAS  PubMed  Google Scholar 

  90. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  91. Ma L, Teruya-Feldstein J, Weinberg RA (2008) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 455(7210):256

    Article  CAS  Google Scholar 

  92. Luqmani YA, Khajah MA (2015) MicroRNA in breast cancer—gene regulators and targets for novel therapies. In: A concise review of molecular pathology of breast cancer. InTech

    Google Scholar 

  93. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D et al (2016) miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res 76(17):5151–5162

    Article  CAS  PubMed  Google Scholar 

  96. Zou Q, Tang Q, Pan Y, Wang X, Dong X, Liang Z et al (2017) MicroRNA-22 inhibits cell growth and metastasis in breast cancer via targeting of SIRT1. Exp Ther Med 14:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li W, Li G, Fan Z, Liu T (2017) Tumor-suppressive microRNA-452 inhibits migration and invasion of breast cancer cells by directly targeting RAB11A. Oncol Lett 14(2):2559–2565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kong W, Yang H, He L, Zhao J-J, Coppola D, Dalton WS et al (2008) MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC et al (2009) RETRACTED: a pleiotropically acting MicroRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2010) Concurrent suppression of integrin α5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 70(12):5147–5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Valastyan S, Weinberg RA (2010) miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle 9(11):2124–2129

    Article  CAS  PubMed  Google Scholar 

  102. Körner C, Keklikoglou I, Bender C, Wörner A, Münstermann E, Wiemann S (2013) MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ϵ (PKCϵ). J Biol Chem 288(12):8750–8761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126(3):565–575

    Article  CAS  PubMed  Google Scholar 

  104. Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z et al (2017) MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 24:386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011

    Article  CAS  PubMed  Google Scholar 

  106. Lee DY, Deng Z, Wang C-H, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci 104(51):20350–20355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Soria-Valles C, Gutiérrez-Fernández A, Guiu M, Mari B, Fueyo A, Gomis R et al (2014) The anti-metastatic activity of collagenase-2 in breast cancer cells is mediated by a signaling pathway involving decorin and miR-21. Oncogene 33(23):3054–3063

    Article  CAS  PubMed  Google Scholar 

  108. Croset M, Goehrig D, Frackowiak A, Bonnelye E, Ansieau S, Puisieux A et al (2014) TWIST1 expression in breast cancer cells facilitates bone metastasis formation. J Bone Miner Res 29(8):1886–1899

    Article  CAS  PubMed  Google Scholar 

  109. Bishopric N, Speransky S, Kajan D, Laderian B, Iorns E, Clarke J et al. (2017) Abstract P4-07-03: dynamic regulation of a microRNA-mRNA network during breast cancer metastasis reveals an essential tumor-promoting role for miR-203. AACR 77, abstract P4-07-03

    Google Scholar 

  110. Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X et al (2015) Small molecule, NSC95397, inhibits the CtBP1-protein partner interaction and CtBP1-mediated transcriptional repression. J Biomol Screen 20(5):663–672

    Article  CAS  PubMed  Google Scholar 

  111. Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73(4):1434–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zare M, Bastami M, Solali S, Alivand M (2017) Aberrantly miRNA promoter methylation and EMT-involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol 233:3729–3744

    Article  PubMed  CAS  Google Scholar 

  113. Sasheva P, Grossniklaus U (2017) Differentially methylated region-representational difference analysis (DMR-RDA): a powerful method to identify DMRs in uncharacterized genomes. Plant Epigenetics: Methods Protocol 1456:113–125

    Article  CAS  Google Scholar 

  114. Gacem RB, Abdelkrim OB, Ziadi S, Dhiab MB, Trimeche M (2014) Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease. Tumor Biol 35(5):4047–4056

    Article  CAS  Google Scholar 

  115. Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z et al (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 35(10):1302–1313

    Article  CAS  PubMed  Google Scholar 

  116. Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X et al (2014) MiR-200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer 135(6):1356–1368

    Article  CAS  PubMed  Google Scholar 

  117. Schwarzenbach H (2017) Clinical relevance of circulating, cell-free and exosomal microRNAs in plasma and serum of breast cancer patients. Oncol Res Treat 40(7–8):423–429

    Article  CAS  PubMed  Google Scholar 

  118. Pichler M, Calin G (2015) MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer 113(4):569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191

    Article  CAS  PubMed  Google Scholar 

  120. Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T (2017) Recent progress in circular RNAs in human cancers. Cancer Lett 404:8–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Prof. Mounir AbouHaidar, Professor of Virology at the University of Toronto Dept. Cell & Systems Biology, for his critical reading of the manuscript and Ms. Nancy Nasr Al Deen for illustrating Fig. 18.1. The authors would also like to acknowledge the support of the Lebanese National Council for Scientific Research (CNRS-L), the University Research Board (URB-AUB) and the International Breast Cancer and Nutrition (IBCN) project. Dr. Rabih Talhouk and Dr. Rihab Nasr are both members of IBCN. Ms. Nataly Naser Al Deen is the recipient of the AUB-CNRS-L scholarship.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rihab Nasr or Rabih Talhouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naser Al Deen, N., Nassar, F., Nasr, R., Talhouk, R. (2019). Cross-Roads to Drug Resistance and Metastasis in Breast Cancer: miRNAs Regulatory Function and Biomarker Capability. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_18

Download citation

Publish with us

Policies and ethics