Skip to main content

Epigenetics of Breast Cancer: Clinical Status of Epi-drugs and Phytochemicals

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Epigenetics refers to alterations in gene expression due to differential histone modifications and DNA methylation at promoter sites of genes. Epigenetic alterations are reversible and are heritable during somatic cell division, but do not involve changes in nucleotide sequence. Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling transcriptional activities of several genes. In last two decades, these modifications have been well recognized to be involved in tumor initiation and progression, which has motivated many investigators to incorporate this novel field in cancer drug development. Recently, growing number of epigenetic changes have been reported that are involved in the regulations of genes involved in breast tumor growth and metastasis. Drugs possessing epigenetic modulatory activities known as epi-drugs, mainly the inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Some of these drugs are undergoing different clinical trials for breast cancer treatment. Several phytochemicals such as green tea polyphenols, curcumin, genistein, resveratrol and sulforaphane have also been shown to alter epigenetic modifications in multiple cancer types including breast cancer. In this chapter, we summarize the role of epigenetic changes in breast cancer progression and metastasis. We have also discussed about various epigenetic modulators possessing chemopreventive and therapeutic efficacy against breast cancer with future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aapola U, Kawasaki K, Scott HS et al (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65:293–298

    Article  CAS  PubMed  Google Scholar 

  2. Ai L, Tao Q, Zhong S, Fields CR, Kim WJ, Lee MW, Cui Y, Brown KD, Robertson KD (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27:1341–1348

    Article  CAS  PubMed  Google Scholar 

  3. Ashraf N et al (2006) Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer 95(8):1056–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116

    Article  CAS  PubMed  Google Scholar 

  5. Benetti R, Gonzalo S, Jaco I et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benevolenskaya EV, Islam AB, Ahsan H et al (2016) DNA methylation and hormone receptor status in breast cancer. Clin Epigenetics 8:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A 106:21830–21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernstein BE, Kamal M, Lindblad-Toh K et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    Article  CAS  PubMed  Google Scholar 

  9. Bettuzzi S et al (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66(2):1234–1240

    Article  CAS  PubMed  Google Scholar 

  10. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8:R38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  12. Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9(11):773–784

    Article  CAS  PubMed  Google Scholar 

  13. Brooks J, Cairns P, Zeleniuch-Jacquotte A (2009) Promoter methylation and the detection of breast cancer. Cancer Causes Control 20:1539–1550

    Article  PubMed  PubMed Central  Google Scholar 

  14. Byrd JC, Marcucci G, Parthun MR et al (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105:959–967

    Article  CAS  PubMed  Google Scholar 

  15. Calin GA (2009) MicroRNAs and cancer: what we know and what we still have to learn. Genome Med 1:78

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen S, Wang Y, Zhou W et al (2014) Identifying novel selective non-nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J Med Chem 57:9028–9041

    Article  CAS  PubMed  Google Scholar 

  18. Cheng AL et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  PubMed  Google Scholar 

  19. Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, Santella RM (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 30:2489–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhillon N et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499

    Article  CAS  PubMed  Google Scholar 

  21. Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X (2001) Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 29:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P (2004) Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 10:6189–6193

    Article  CAS  PubMed  Google Scholar 

  23. Duong V, Bret C, Altucci L et al (2008) Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res 6:1908–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  CAS  PubMed  Google Scholar 

  25. Eiriksdottir G, Johannesdottir G, Ingvarsson S et al (1998) Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. Eur J Cancer 34:2076–2081

    Article  CAS  PubMed  Google Scholar 

  26. Elsheikh SE, Green AR, Rakha EA et al (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69:3802–3809

    Article  CAS  PubMed  Google Scholar 

  27. Esteller M (2000) Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer 36(18):2294–2300

    Article  CAS  PubMed  Google Scholar 

  28. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    Article  CAS  PubMed  Google Scholar 

  29. Esteller M et al (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10(26):3001–3007

    Article  CAS  PubMed  Google Scholar 

  30. Fang F, Turcan S, Rimner A et al (2011) Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3:75ra25

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ferguson-Smith AC, Surani MA (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science 293:1086–1089

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321:1086–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Foss F, Advani R, Duvic M et al (2015) A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol 168:811–819

    Article  CAS  PubMed  Google Scholar 

  34. Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  35. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  CAS  PubMed  Google Scholar 

  36. Garcia JS, Jain N, Godley LA (2010) An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Oncol Targets Ther 3:1–13

    CAS  Google Scholar 

  37. Gayther SA, Batley SJ, Linger L et al (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24:300–303

    Article  CAS  PubMed  Google Scholar 

  38. Girault I, Tozlu S, Lidereau R, Bièche I (2003) Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9:4415–4422

    CAS  PubMed  Google Scholar 

  39. Gorrini C et al (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063–1067

    Article  CAS  PubMed  Google Scholar 

  40. Gros C, Fleury L, Nahoum V et al (2015) New insights on the mechanism of quinoline-based DNA methyltransferase inhibitors. J Biol Chem 290:6293–6302

    Article  CAS  PubMed  Google Scholar 

  41. Guo D, Myrdal PB, Karlage KL, O’Connell SP, Wissinger TJ, Tabibi SE, Yalkowsky SH (2010) Stability of 5-fluoro-2′-deoxycytidine and tetrahydrouridine in combination. AAPS PharmSciTech 11:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hon GC, Hawkins RD, Caballero OL et al (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22:246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horton JR, Engstrom A, Zoeller EL, Liu X, Shanks JR, Zhang X, Johns MA, Vertino PM, Fu H, Cheng X (2016) Characterization of a linked Jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J Biol Chem 291:2631–2646

    Article  CAS  PubMed  Google Scholar 

  44. Hosseini A, Ghorbani A (2015) Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed 5(2):84–97

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Q, Gumireddy K, Schrier M et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202–210

    Article  CAS  PubMed  Google Scholar 

  46. Iorio MV, Casalini P, Piovan C, Braccioli L, Tagliabue E (2011) Breast cancer and microRNAs: therapeutic impact. Breast 20(Suppl 3):S63–S70

    Article  PubMed  Google Scholar 

  47. Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23:4225–4231

    Article  CAS  PubMed  Google Scholar 

  48. Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, Müller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3:1225–1231

    Article  CAS  PubMed  Google Scholar 

  49. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  50. Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, Motoyama T (2001) Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer 85:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  52. Jones PA (2002) DNA methylation and cancer. Oncogene 21:5358–5360

    Article  CAS  PubMed  Google Scholar 

  53. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  54. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    Article  CAS  PubMed  Google Scholar 

  55. Knudson AG (2000) Chasing the cancer demon. Annu Rev Genet 34:1–19

    Article  CAS  PubMed  Google Scholar 

  56. Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7(32):52517–52529

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  58. Kunju LP, Cookingham C, Toy KA, Chen W, Sabel MS, Kleer CG (2011) EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Mod Pathol 24:786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    Article  CAS  PubMed  Google Scholar 

  60. Levi F et al (2005) Resveratrol and breast cancer risk. Eur J Cancer Prev 14(2):139–142

    Article  CAS  PubMed  Google Scholar 

  61. Lin YW, Sheu JC, Liu LY, Chen CH, Lee HS, Huang GT, Wang JT, Lee PH, Lu FJ (1999) Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur J Cancer 35:1730–1734

    Article  CAS  PubMed  Google Scholar 

  62. Lo PK, Sukumar S (2008) Epigenomics and breast cancer. Pharmacogenomics 9:1879–1902

    Article  CAS  PubMed  Google Scholar 

  63. Lo PK, Mehrotra J, D’Costa A, Fackler MJ, Garrett-Mayer E, Argani P, Sukumar S (2006) Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol Ther 5:281–286

    Article  CAS  PubMed  Google Scholar 

  64. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  65. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mertens-Talcott SU et al (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67(22):11001–11011

    Article  CAS  PubMed  Google Scholar 

  67. Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C (2013) Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer--overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 13:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nakamura K, Nakabayashi K, Htet Aung K, Aizawa K, Hori N, Yamauchi J, Hata K, Tanoue A (2015) DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One 10:e0120545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Newman EM, Morgan RJ, Kummar S et al (2015) A phase I, pharmacokinetic, and pharmacodynamic evaluation of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine, administered with tetrahydrouridine. Cancer Chemother Pharmacol 75:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Norouzi S et al (2018) Curcumin as an adjunct therapy and microRNA modulator in breast cancer. Curr Pharm Des 24(2):171–177

    Article  CAS  PubMed  Google Scholar 

  71. O’Connor OA (2006) Pralatrexate: an emerging new agent with activity in T-cell lymphomas. Curr Opin Oncol 18(6):591–597

    Article  PubMed  CAS  Google Scholar 

  72. O’Connor OA, Horwitz S, Masszi T et al (2015) Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol 33:2492–2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12(2):201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  75. Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG, Kang J (2011) Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep 25:1677–1681

    CAS  PubMed  Google Scholar 

  76. Piekarz RL, Frye R, Turner M et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG, Baylin SB (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2:e40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rasti M et al (2005) Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. J Virol 79(9):5594–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rauscher GH, Kresovich JK, Poulin M et al (2015) Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15:816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6(5):403–410

    Article  CAS  PubMed  Google Scholar 

  81. Reynolds PA, Sigaroudinia M, Zardo G, Wilson MB, Benton GM, Miller CJ, Hong C, Fridlyand J, Costello JF, Tlsty TD (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281:24790–24802

    Article  CAS  PubMed  Google Scholar 

  82. Richardson BC (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132:2401S–2405S

    Article  CAS  PubMed  Google Scholar 

  83. Roll JD, Rivenbark AG, Jones WD, Coleman WB (2008) DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ropero S, Fraga MF, Ballestar E et al (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38:566–569

    Article  CAS  PubMed  Google Scholar 

  85. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26(37):5489–5504

    Article  CAS  PubMed  Google Scholar 

  87. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77

    Article  CAS  PubMed  Google Scholar 

  88. Schübeler D, MacAlpine DM, Scalzo D et al (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18:1263–1271

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schultz J et al (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549–557

    Article  CAS  PubMed  Google Scholar 

  90. Shukla V, Coumoul X, Lahusen T et al (2010) BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res 20:1201–1215

    Article  CAS  PubMed  Google Scholar 

  91. Shukla S, Khan S, Tollefsbol TO et al (2013) Genetics and epigenetics of lung cancer: mechanisms and future perspectives. Curr Cancer Ther Rev 9:97–110

    Article  CAS  Google Scholar 

  92. Shukla S, Meeran SM, Katiyar SK (2014) Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 355(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Silva J, Silva JM, Domínguez G, García JM, Cantos B, Rodríguez R, Larrondo FJ, Provencio M, España P, Bonilla F (2003) Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J Pathol 199:289–297

    Article  CAS  PubMed  Google Scholar 

  94. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  CAS  PubMed  Google Scholar 

  95. Song FF, Xia LL, Ji P et al (2015) Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogene 4:e159

    Article  CAS  Google Scholar 

  96. Storka A et al (2015) Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther 53(1):54–65

    Article  CAS  PubMed  Google Scholar 

  97. Tajima S, Suetake I (1998) Regulation and function of DNA methylation in vertebrates. J Biochem 123(6):993–999

    Article  CAS  PubMed  Google Scholar 

  98. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tlsty TD et al (2004) Genetic and epigenetic changes in mammary epithelial cells may mimic early events in carcinogenesis. J Mammary Gland Biol Neoplasia 9(3):263–274

    Article  PubMed  Google Scholar 

  101. Veeck J, Esteller M (2010) Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 15(1):5–17

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 13:363–372

    Article  CAS  PubMed  Google Scholar 

  104. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482

    Article  CAS  PubMed  Google Scholar 

  105. Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL, Bradshaw PT, Neugut AI, Santella RM, Chen J (2012) DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in a population-based study. FASEB J 26:2657–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang PM, Lin YT, Shun CT, Lin SH, Wei TT, Chuang SH, Wu MS, Chen CC (2013) Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep 3:3219

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Coukos G (2006) MicroRNAs: a new insight into cancer genome. Cell Cycle 5:2216–2219

    Article  CAS  PubMed  Google Scholar 

  108. Zhu W et al (2012) Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer 64(3):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Musthapa Meeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S., Penta, D., Mondal, P., Meeran, S.M. (2019). Epigenetics of Breast Cancer: Clinical Status of Epi-drugs and Phytochemicals. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_16

Download citation

Publish with us

Policies and ethics