Advertisement

A Stochastic-Statistical Residential Burglary Model with Finite Size Effects

  • Chuntian WangEmail author
  • Yuan Zhang
  • Andrea L. Bertozzi
  • Martin B. Short
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Transience of spatio-temporal clusters of residential burglary is well documented in empirical observations, and could be due to finite size effects anecdotally. However a theoretical understanding has been lacking. The existing agent-based statistical models of criminal behavior for residential burglary assume deterministic-time steps for arrivals of events. To incorporate random arrivals, this article introduces a Poisson clock into the model of residential burglaries, which could set time increments as independently exponentially distributed random variables. We apply the Poisson clock into the seminal deterministic-time-step model in Short et al. (Math Models Methods Appl Sci 18:1249–1267, 2008). Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.

Notes

Acknowledgements

We would like to thank the helpful discussions with Prof. A. Debussche, Prof. Andrea Montanari, Prof. Thomas Liggett, Prof. Carl Mueller, Prof. Wotao Yin, Mac Jugal Nankep Nguepedja, Da Kuang, Yifan Chen, Fangbo Zhang, Yu Gu, Jingyu Huang, Yatin Chow, Wuchen Li, and Kenneth Van. A. Bertozzi is supported by NSF grant DMS-1737770 and M. Short is supported by NSF grant DMS-1737925.

References

  1. 1.
    D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, (2009).Google Scholar
  2. 2.
    G. J. Babu and E. D. Feigelson, Spatial point processes in astronomy, J. Statist. Plann. Inference, 50, 311–326, (2015).MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Bellomo, F. Colasuonno, D. Knopoff, and J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Netw. Het. Media, 10, 421–441, (2015).MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Berestycki, N. Rodríguez, and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11, 1097–1126, (2013).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems, 25, paper n. 123006, 26 (2009).MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Bichteler, Stochastic integration with jumps, Cambridge University Press, Cambridge, (2002).Google Scholar
  7. 7.
    D. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws of human travel, Nature, 439, 462–465, (2006).CrossRefGoogle Scholar
  8. 8.
    T. Budd, Burglary of domestic dwellings: Findings from the British Crime Survey, Home Office Statistical Bulletin, Vol. 4 (Government Statistical Service, London, 1999).Google Scholar
  9. 9.
    L. Cao and M. Grabchak, Smoothly truncated levy walks: Toward a realistic mobility model, 2014 IEEE 33rd Int. Performance Computing and Communications Conference, (IPCCC), 5–7 December 2014, Austin, Texas, USA, pp. 1–8.Google Scholar
  10. 10.
    S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, and S. G. McCalla, Crime modeling with Lévy flights, SIAM J. Appl. Math., 73, 1703–1720, (2013).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. N. Chow, W. Li, and H. Zhou, Entropy dissipation of Fokker-Planck equations on graphs, Discrete Contin. Dyn. Syst., 38, 4929–4950, (2018).MathSciNetCrossRefGoogle Scholar
  12. 12.
    K. L. Chung and R. J. Williams, Introduction to stochastic integration, Birkhäuser/Springer, New York, (2014).Google Scholar
  13. 13.
    L. Citi, D. Ba, E. N. Brown, and R. Barbieri, Likelihood methods for point processes with refractoriness, Neural Comput., 26, 237–263, (2014).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Durrett, Stochastic calculus, CRC Press, Boca Raton, FL, (1996).Google Scholar
  15. 15.
    R. Durrett, Essentials of stochastic processes, Springer-Verlag, New York, (1999).Google Scholar
  16. 16.
    R. Durrett, Probability models for DNA sequence evolution, Springer-Verlag, New York, (2002).Google Scholar
  17. 17.
    R. Durrett, Probability: theory and examples, Cambridge University Press, Cambridge, (2010).Google Scholar
  18. 18.
    P. Embrechts, R. Frey, and H. Furrer, Stochastic processes in insurance and finance, in Stochastic processes: theory and methods. North-Holland, Amsterdam, 365–412, (2001).Google Scholar
  19. 19.
    S. N. Ethier and T. G. Kurtz, Markov processes, John Wiley & Sons, Inc., New York, (1986).Google Scholar
  20. 20.
    M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal, 206, 997–1038, (2012) .MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355–1374, (2014).MathSciNetzbMATHGoogle Scholar
  22. 22.
    M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab., 26, 1774–1806, (2016).MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Farrell and K. Pease, Repeat Victimization, Criminal Justice Press, (2001).Google Scholar
  24. 24.
    T. Franco, Interacting particle systems: hydrodynamic limit versus high density limit, in From particle systems to partial differential equations. Springer, Heidelberg, 179–189, (2014).Google Scholar
  25. 25.
    J. M. Gau and T. C. Pratt, Revisiting broken windows theory: Examining the sources of the discriminant validity of perceived disorder and crime, J. Crim. Justice, 38, 758–766, (2010).CrossRefGoogle Scholar
  26. 26.
    M. C. González, C. A. Hidalgo, and A.-L. Barabási, Understanding individual human mobility patterns, Nature, 453, 779–782, (2008).CrossRefGoogle Scholar
  27. 27.
    I. J. Good, Some statistical applications of Poisson’s work, Statist. Sci., 1, 157–180, (1986).MathSciNetCrossRefGoogle Scholar
  28. 28.
    W. Gorr and Y. Lee, Early warning system for temporary crime hot spots, J. Quant. Criminol., 31, 25–47, (2015).CrossRefGoogle Scholar
  29. 29.
    T. Goudon, B. Nkonga, M. Rascle, and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305, 1–22, (2015).MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., 118, 31–59, (1988).MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Hamba, Turbulent energy density in scale space for inhomogeneous turbulence, J. Fluid Mech., 842, 532–553, (2018).MathSciNetCrossRefGoogle Scholar
  32. 32.
    I. Hameduddin, C. Meneveau, T A. Zaki, and D. F. Gayme, Geometric decomposition of the conformation tensor in viscoelastic turbulence, J. Fluid Mech., 842, 395–427, (2018).MathSciNetCrossRefGoogle Scholar
  33. 33.
    B. E. Harcourt, Reflecting on the subject: A critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style, Michigan Law Rev., 97, 291–389, (1998).CrossRefGoogle Scholar
  34. 34.
    S. W. He, J. G. Wang, and J. A. Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, (1992).Google Scholar
  35. 35.
    S. J. Illingworth, J. P. Monty, and I. Marusic, Estimating large-scale structures in wall turbulence using linear models, J. Fluid Mech., 842, 146–162, (2018).MathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, (2003).Google Scholar
  37. 37.
    A. James, M. J. Plank, and A. M. Edwards, Assessing Lévy walks as models of animal foraging, J. R. Soc. Interface, 8, 1233–1247, (2011).CrossRefGoogle Scholar
  38. 38.
    J. Jiménez, Coherent structures in wall-bounded turbulence, J. Fluid Mech., 842, P1, 100, (2018).Google Scholar
  39. 39.
    S. D. Johnson, W. Bernasco, K. J. Bowers, H. Elffers, J. Ratcliffe, G. Rengert, and M. Townsley, Space-time patterns of risk: A cross national assessment of residential burglary victimization, J. Quant. Criminol., 23, 201–219, (2007).CrossRefGoogle Scholar
  40. 40.
    S. D. Johnson and K. J. Bowers, The stability of space-time clusters of burglary, Br. J. Criminol., 44, 55–65, (2004).CrossRefGoogle Scholar
  41. 41.
    S. D. Johnson, K. Bowers, and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, Br. J. Criminol., 37, 224–241, (1997).CrossRefGoogle Scholar
  42. 42.
    P. A. Jones, P. J. Brantingham, and L. R. Chayes, Statistical models of criminal behavior: the effects of law enforcement actions, Math. Models Methods Appl. Sci., 20, 1397–1423, (2010).MathSciNetCrossRefGoogle Scholar
  43. 43.
    S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1981).Google Scholar
  44. 44.
    C. Kipnis, and C. Landim, Scaling limits of interacting particle systems, Springer-Verlag, Berlin, (1999).Google Scholar
  45. 45.
    C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviation for simple exclusion processes, Comm. Pure Appl. Math., 42, 115–137, (1989).MathSciNetCrossRefGoogle Scholar
  46. 46.
    T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, Discrete Contin. Dyn. Syst. Ser. B, 19, 1373–1410, (2014).MathSciNetCrossRefGoogle Scholar
  47. 47.
    T. M. Liggett, Lectures on stochastic flows and applications, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, (1986).Google Scholar
  48. 48.
    T. Levajković, H. Mena, and M. Zarfl, Lévy processes, subordinators and crime modeling, Novi Sad J. Math. 46, 65–86, (2016).MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. M. Liggett, Interacting Markov processes, in Biological growth and spread (Proc. Conf., Heidelberg, 1979). Springer, Berlin-New York, 145–156, (1980).CrossRefGoogle Scholar
  50. 50.
    T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, (1985).Google Scholar
  51. 51.
    T. M. Liggett, Continuous time Markov processes, American Mathematical Society, Providence, RI, (2010).Google Scholar
  52. 52.
    D. J. B. Lloyd and H. O’Farrell, On localised hotspots of an urban crime model, Phys. D, 253, 23–39, (2013).MathSciNetCrossRefGoogle Scholar
  53. 53.
    R. N. Mantegna and H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett., 73, 2946–2949, (1994).MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. C. Mariani and Y. Liu, Normalized truncated Levy walks applied to the study of financial indices, Physica A, Stat. Mech. Appl., 377, 590–598, (2007).CrossRefGoogle Scholar
  55. 55.
    G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26, 1051–1093, (2016).MathSciNetCrossRefGoogle Scholar
  56. 56.
    A. Matacz, Financial modeling and option theory with the truncated Lévy process, Int. J. Theor. Appl. Financ., 3, 143–160, (2000).MathSciNetCrossRefGoogle Scholar
  57. 57.
    S. G. McCalla, M. B. Short, and P. J. Brantingham, The effects of sacred value networks within an evolutionary, adversarial game, J. Stat. Phys., 151, 673–688, (2013).MathSciNetCrossRefGoogle Scholar
  58. 58.
    M. Métivier, Semimartingales, Walter de Gruyter & Co., Berlin-New York, (1982).Google Scholar
  59. 59.
    M. Métivier and J. Pellaumail, Stochastic integration, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., (1980).Google Scholar
  60. 60.
    L. C. Miranda and R. Riera, Truncated Lévy walks and an emerging market economic index, Physica A, Stat. Mech. Appl., 297, 509–520, (2001) .CrossRefGoogle Scholar
  61. 61.
    G. O. Mohler, M. B. Short, and P. J. Brantingham, The concentration-dynamics tradeoff in crime hot spotting, in Unraveling the Crime-Place Connection Vol. 22 (Routledge, 2017), pp. 19-40.Google Scholar
  62. 62.
    G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, Self-exciting point process modeling of crime, J. Am. Stat. Assoc., 106, 100–108, (2011) .MathSciNetCrossRefGoogle Scholar
  63. 63.
    G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J. Brantingham, Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 110, 1399–1411, (2015) .MathSciNetCrossRefGoogle Scholar
  64. 64.
    J. Mourrat, A quantitative central limit theorem for the random walk among random conductance, Electron. J. Probab., 17, no. 97, 17, (2012).Google Scholar
  65. 65.
    H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26, 263–298, (1988).MathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Cambridge University Press, Cambridge, (2007).Google Scholar
  67. 67.
    A. B. Pitcher, Adding police to a mathematical model of burglary, European J. Appl. Math., 21, 401–419, (2010).MathSciNetCrossRefGoogle Scholar
  68. 68.
    P. E. Protter, Stochastic integration and differential equations, Springer-Verlag, Berlin, (2005).Google Scholar
  69. 69.
    S. R. S. Varadhan, Entropy methods in hydrodynamic scaling, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, 196–208, (1995).CrossRefGoogle Scholar
  70. 70.
    S. R. S. Varadhan, Lectures on hydrodynamic scaling, in Hydrodynamic limits and related topics (Toronto, ON, 1998). Amer. Math. Soc., Providence, RI, 3–40, (2000).Google Scholar
  71. 71.
    N. Rodríguez, On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D, 260, 191–200, (2013) .MathSciNetCrossRefGoogle Scholar
  72. 72.
    N. Rodríguez and A. L. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Models Methods Appl. Sci., 20, 1425–1457, (2010).MathSciNetCrossRefGoogle Scholar
  73. 73.
    M. B. Short, A. L. Bertozzi, and P. J. Brantingham, Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9, 462–483, (2010).MathSciNetCrossRefGoogle Scholar
  74. 74.
    M. B. Short, P. J. Brantingham, A. L. Bertozzi, and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Natl. Acad. Sci., 107, 3961–3965, (2010).CrossRefGoogle Scholar
  75. 75.
    M. B. Short, M. R. D’Orsogna, P. J. Brantingham, and G. E. Tita, Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25, 325–339, (2009).CrossRefGoogle Scholar
  76. 76.
    M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249–1267, (2008).MathSciNetCrossRefGoogle Scholar
  77. 77.
    M. B. Short, G. O. Mohler, P. J. Brantingham, and G. E. Tita, Gang rivalry dynamics via coupled point process networks, Discrete Contin. Dyn. Syst. Ser. B, 19, 1459–1477, (2014).MathSciNetCrossRefGoogle Scholar
  78. 78.
    B. Snook, Individual differences in distance travelled by serial burglars, J. Investig. Psych. Offender Profil. 1, 53–66, (2004).CrossRefGoogle Scholar
  79. 79.
    D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, (2006).Google Scholar
  80. 80.
    B. Tóth and B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys., 112, 497–521, (2003).MathSciNetCrossRefGoogle Scholar
  81. 81.
    W. H. Tse and M. J. Ward, Hotspot formation and dynamics for a continuum model of urban crime, European J. Appl. Math. 27, 583–624, (2016).MathSciNetCrossRefGoogle Scholar
  82. 82.
    P. J. van Koppen and R. W. J. Jansen, The road to the robbery: Travel patterns in commercial robberies, Brit. J. Criminol. 38, 230–246, (1998).CrossRefGoogle Scholar
  83. 83.
    J. Q. Wilson and G. L. Kelling, Broken windows: The police and neighborhood safety, Atlantic Mon. 249, 29–38, (1982).Google Scholar
  84. 84.
    J. R. Zipkin, M. B. Short, and A. L. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst. Ser. B 19, 1479–1506, (2014).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chuntian Wang
    • 1
    Email author
  • Yuan Zhang
    • 2
  • Andrea L. Bertozzi
    • 1
  • Martin B. Short
    • 3
  1. 1.University of California, Los AngelesLos AngelesUSA
  2. 2.Peking UniversityBeijingPeople’s Republic of China
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations