Active Particles, Volume 2 pp 245-274 | Cite as
A Stochastic-Statistical Residential Burglary Model with Finite Size Effects
- 1 Citations
- 253 Downloads
Abstract
Transience of spatio-temporal clusters of residential burglary is well documented in empirical observations, and could be due to finite size effects anecdotally. However a theoretical understanding has been lacking. The existing agent-based statistical models of criminal behavior for residential burglary assume deterministic-time steps for arrivals of events. To incorporate random arrivals, this article introduces a Poisson clock into the model of residential burglaries, which could set time increments as independently exponentially distributed random variables. We apply the Poisson clock into the seminal deterministic-time-step model in Short et al. (Math Models Methods Appl Sci 18:1249–1267, 2008). Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.
Notes
Acknowledgements
We would like to thank the helpful discussions with Prof. A. Debussche, Prof. Andrea Montanari, Prof. Thomas Liggett, Prof. Carl Mueller, Prof. Wotao Yin, Mac Jugal Nankep Nguepedja, Da Kuang, Yifan Chen, Fangbo Zhang, Yu Gu, Jingyu Huang, Yatin Chow, Wuchen Li, and Kenneth Van. A. Bertozzi is supported by NSF grant DMS-1737770 and M. Short is supported by NSF grant DMS-1737925.
References
- 1.D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, (2009).Google Scholar
- 2.G. J. Babu and E. D. Feigelson, Spatial point processes in astronomy, J. Statist. Plann. Inference, 50, 311–326, (2015).MathSciNetCrossRefGoogle Scholar
- 3.N. Bellomo, F. Colasuonno, D. Knopoff, and J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Netw. Het. Media, 10, 421–441, (2015).MathSciNetCrossRefGoogle Scholar
- 4.H. Berestycki, N. Rodríguez, and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11, 1097–1126, (2013).MathSciNetCrossRefGoogle Scholar
- 5.M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems, 25, paper n. 123006, 26 (2009).MathSciNetCrossRefGoogle Scholar
- 6.K. Bichteler, Stochastic integration with jumps, Cambridge University Press, Cambridge, (2002).Google Scholar
- 7.D. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws of human travel, Nature, 439, 462–465, (2006).CrossRefGoogle Scholar
- 8.T. Budd, Burglary of domestic dwellings: Findings from the British Crime Survey, Home Office Statistical Bulletin, Vol. 4 (Government Statistical Service, London, 1999).Google Scholar
- 9.L. Cao and M. Grabchak, Smoothly truncated levy walks: Toward a realistic mobility model, 2014 IEEE 33rd Int. Performance Computing and Communications Conference, (IPCCC), 5–7 December 2014, Austin, Texas, USA, pp. 1–8.Google Scholar
- 10.S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, and S. G. McCalla, Crime modeling with Lévy flights, SIAM J. Appl. Math., 73, 1703–1720, (2013).MathSciNetCrossRefGoogle Scholar
- 11.S. N. Chow, W. Li, and H. Zhou, Entropy dissipation of Fokker-Planck equations on graphs, Discrete Contin. Dyn. Syst., 38, 4929–4950, (2018).MathSciNetCrossRefGoogle Scholar
- 12.K. L. Chung and R. J. Williams, Introduction to stochastic integration, Birkhäuser/Springer, New York, (2014).Google Scholar
- 13.L. Citi, D. Ba, E. N. Brown, and R. Barbieri, Likelihood methods for point processes with refractoriness, Neural Comput., 26, 237–263, (2014).MathSciNetCrossRefGoogle Scholar
- 14.R. Durrett, Stochastic calculus, CRC Press, Boca Raton, FL, (1996).Google Scholar
- 15.R. Durrett, Essentials of stochastic processes, Springer-Verlag, New York, (1999).Google Scholar
- 16.R. Durrett, Probability models for DNA sequence evolution, Springer-Verlag, New York, (2002).Google Scholar
- 17.R. Durrett, Probability: theory and examples, Cambridge University Press, Cambridge, (2010).Google Scholar
- 18.P. Embrechts, R. Frey, and H. Furrer, Stochastic processes in insurance and finance, in Stochastic processes: theory and methods. North-Holland, Amsterdam, 365–412, (2001).Google Scholar
- 19.S. N. Ethier and T. G. Kurtz, Markov processes, John Wiley & Sons, Inc., New York, (1986).Google Scholar
- 20.M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal, 206, 997–1038, (2012) .MathSciNetCrossRefGoogle Scholar
- 21.M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355–1374, (2014).MathSciNetzbMATHGoogle Scholar
- 22.M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab., 26, 1774–1806, (2016).MathSciNetCrossRefGoogle Scholar
- 23.G. Farrell and K. Pease, Repeat Victimization, Criminal Justice Press, (2001).Google Scholar
- 24.T. Franco, Interacting particle systems: hydrodynamic limit versus high density limit, in From particle systems to partial differential equations. Springer, Heidelberg, 179–189, (2014).Google Scholar
- 25.J. M. Gau and T. C. Pratt, Revisiting broken windows theory: Examining the sources of the discriminant validity of perceived disorder and crime, J. Crim. Justice, 38, 758–766, (2010).CrossRefGoogle Scholar
- 26.M. C. González, C. A. Hidalgo, and A.-L. Barabási, Understanding individual human mobility patterns, Nature, 453, 779–782, (2008).CrossRefGoogle Scholar
- 27.I. J. Good, Some statistical applications of Poisson’s work, Statist. Sci., 1, 157–180, (1986).MathSciNetCrossRefGoogle Scholar
- 28.W. Gorr and Y. Lee, Early warning system for temporary crime hot spots, J. Quant. Criminol., 31, 25–47, (2015).CrossRefGoogle Scholar
- 29.T. Goudon, B. Nkonga, M. Rascle, and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305, 1–22, (2015).MathSciNetCrossRefGoogle Scholar
- 30.M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., 118, 31–59, (1988).MathSciNetCrossRefGoogle Scholar
- 31.F. Hamba, Turbulent energy density in scale space for inhomogeneous turbulence, J. Fluid Mech., 842, 532–553, (2018).MathSciNetCrossRefGoogle Scholar
- 32.I. Hameduddin, C. Meneveau, T A. Zaki, and D. F. Gayme, Geometric decomposition of the conformation tensor in viscoelastic turbulence, J. Fluid Mech., 842, 395–427, (2018).MathSciNetCrossRefGoogle Scholar
- 33.B. E. Harcourt, Reflecting on the subject: A critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style, Michigan Law Rev., 97, 291–389, (1998).CrossRefGoogle Scholar
- 34.S. W. He, J. G. Wang, and J. A. Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, (1992).Google Scholar
- 35.S. J. Illingworth, J. P. Monty, and I. Marusic, Estimating large-scale structures in wall turbulence using linear models, J. Fluid Mech., 842, 146–162, (2018).MathSciNetCrossRefGoogle Scholar
- 36.J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, (2003).Google Scholar
- 37.A. James, M. J. Plank, and A. M. Edwards, Assessing Lévy walks as models of animal foraging, J. R. Soc. Interface, 8, 1233–1247, (2011).CrossRefGoogle Scholar
- 38.J. Jiménez, Coherent structures in wall-bounded turbulence, J. Fluid Mech., 842, P1, 100, (2018).Google Scholar
- 39.S. D. Johnson, W. Bernasco, K. J. Bowers, H. Elffers, J. Ratcliffe, G. Rengert, and M. Townsley, Space-time patterns of risk: A cross national assessment of residential burglary victimization, J. Quant. Criminol., 23, 201–219, (2007).CrossRefGoogle Scholar
- 40.S. D. Johnson and K. J. Bowers, The stability of space-time clusters of burglary, Br. J. Criminol., 44, 55–65, (2004).CrossRefGoogle Scholar
- 41.S. D. Johnson, K. Bowers, and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, Br. J. Criminol., 37, 224–241, (1997).CrossRefGoogle Scholar
- 42.P. A. Jones, P. J. Brantingham, and L. R. Chayes, Statistical models of criminal behavior: the effects of law enforcement actions, Math. Models Methods Appl. Sci., 20, 1397–1423, (2010).MathSciNetCrossRefGoogle Scholar
- 43.S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1981).Google Scholar
- 44.C. Kipnis, and C. Landim, Scaling limits of interacting particle systems, Springer-Verlag, Berlin, (1999).Google Scholar
- 45.C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviation for simple exclusion processes, Comm. Pure Appl. Math., 42, 115–137, (1989).MathSciNetCrossRefGoogle Scholar
- 46.T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, Discrete Contin. Dyn. Syst. Ser. B, 19, 1373–1410, (2014).MathSciNetCrossRefGoogle Scholar
- 47.T. M. Liggett, Lectures on stochastic flows and applications, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, (1986).Google Scholar
- 48.T. Levajković, H. Mena, and M. Zarfl, Lévy processes, subordinators and crime modeling, Novi Sad J. Math. 46, 65–86, (2016).MathSciNetCrossRefGoogle Scholar
- 49.T. M. Liggett, Interacting Markov processes, in Biological growth and spread (Proc. Conf., Heidelberg, 1979). Springer, Berlin-New York, 145–156, (1980).CrossRefGoogle Scholar
- 50.T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, (1985).Google Scholar
- 51.T. M. Liggett, Continuous time Markov processes, American Mathematical Society, Providence, RI, (2010).Google Scholar
- 52.D. J. B. Lloyd and H. O’Farrell, On localised hotspots of an urban crime model, Phys. D, 253, 23–39, (2013).MathSciNetCrossRefGoogle Scholar
- 53.R. N. Mantegna and H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett., 73, 2946–2949, (1994).MathSciNetCrossRefGoogle Scholar
- 54.M. C. Mariani and Y. Liu, Normalized truncated Levy walks applied to the study of financial indices, Physica A, Stat. Mech. Appl., 377, 590–598, (2007).CrossRefGoogle Scholar
- 55.G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26, 1051–1093, (2016).MathSciNetCrossRefGoogle Scholar
- 56.A. Matacz, Financial modeling and option theory with the truncated Lévy process, Int. J. Theor. Appl. Financ., 3, 143–160, (2000).MathSciNetCrossRefGoogle Scholar
- 57.S. G. McCalla, M. B. Short, and P. J. Brantingham, The effects of sacred value networks within an evolutionary, adversarial game, J. Stat. Phys., 151, 673–688, (2013).MathSciNetCrossRefGoogle Scholar
- 58.M. Métivier, Semimartingales, Walter de Gruyter & Co., Berlin-New York, (1982).Google Scholar
- 59.M. Métivier and J. Pellaumail, Stochastic integration, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., (1980).Google Scholar
- 60.L. C. Miranda and R. Riera, Truncated Lévy walks and an emerging market economic index, Physica A, Stat. Mech. Appl., 297, 509–520, (2001) .CrossRefGoogle Scholar
- 61.G. O. Mohler, M. B. Short, and P. J. Brantingham, The concentration-dynamics tradeoff in crime hot spotting, in Unraveling the Crime-Place Connection Vol. 22 (Routledge, 2017), pp. 19-40.Google Scholar
- 62.G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, Self-exciting point process modeling of crime, J. Am. Stat. Assoc., 106, 100–108, (2011) .MathSciNetCrossRefGoogle Scholar
- 63.G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J. Brantingham, Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 110, 1399–1411, (2015) .MathSciNetCrossRefGoogle Scholar
- 64.J. Mourrat, A quantitative central limit theorem for the random walk among random conductance, Electron. J. Probab., 17, no. 97, 17, (2012).Google Scholar
- 65.H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26, 263–298, (1988).MathSciNetCrossRefGoogle Scholar
- 66.S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Cambridge University Press, Cambridge, (2007).Google Scholar
- 67.A. B. Pitcher, Adding police to a mathematical model of burglary, European J. Appl. Math., 21, 401–419, (2010).MathSciNetCrossRefGoogle Scholar
- 68.P. E. Protter, Stochastic integration and differential equations, Springer-Verlag, Berlin, (2005).Google Scholar
- 69.S. R. S. Varadhan, Entropy methods in hydrodynamic scaling, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, 196–208, (1995).CrossRefGoogle Scholar
- 70.S. R. S. Varadhan, Lectures on hydrodynamic scaling, in Hydrodynamic limits and related topics (Toronto, ON, 1998). Amer. Math. Soc., Providence, RI, 3–40, (2000).Google Scholar
- 71.N. Rodríguez, On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D, 260, 191–200, (2013) .MathSciNetCrossRefGoogle Scholar
- 72.N. Rodríguez and A. L. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Models Methods Appl. Sci., 20, 1425–1457, (2010).MathSciNetCrossRefGoogle Scholar
- 73.M. B. Short, A. L. Bertozzi, and P. J. Brantingham, Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9, 462–483, (2010).MathSciNetCrossRefGoogle Scholar
- 74.M. B. Short, P. J. Brantingham, A. L. Bertozzi, and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Natl. Acad. Sci., 107, 3961–3965, (2010).CrossRefGoogle Scholar
- 75.M. B. Short, M. R. D’Orsogna, P. J. Brantingham, and G. E. Tita, Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25, 325–339, (2009).CrossRefGoogle Scholar
- 76.M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249–1267, (2008).MathSciNetCrossRefGoogle Scholar
- 77.M. B. Short, G. O. Mohler, P. J. Brantingham, and G. E. Tita, Gang rivalry dynamics via coupled point process networks, Discrete Contin. Dyn. Syst. Ser. B, 19, 1459–1477, (2014).MathSciNetCrossRefGoogle Scholar
- 78.B. Snook, Individual differences in distance travelled by serial burglars, J. Investig. Psych. Offender Profil. 1, 53–66, (2004).CrossRefGoogle Scholar
- 79.D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, (2006).Google Scholar
- 80.B. Tóth and B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys., 112, 497–521, (2003).MathSciNetCrossRefGoogle Scholar
- 81.W. H. Tse and M. J. Ward, Hotspot formation and dynamics for a continuum model of urban crime, European J. Appl. Math. 27, 583–624, (2016).MathSciNetCrossRefGoogle Scholar
- 82.P. J. van Koppen and R. W. J. Jansen, The road to the robbery: Travel patterns in commercial robberies, Brit. J. Criminol. 38, 230–246, (1998).CrossRefGoogle Scholar
- 83.J. Q. Wilson and G. L. Kelling, Broken windows: The police and neighborhood safety, Atlantic Mon. 249, 29–38, (1982).Google Scholar
- 84.J. R. Zipkin, M. B. Short, and A. L. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst. Ser. B 19, 1479–1506, (2014).MathSciNetCrossRefGoogle Scholar