Skip to main content

A Stochastic-Statistical Residential Burglary Model with Finite Size Effects

  • Chapter
  • First Online:
Active Particles, Volume 2

Abstract

Transience of spatio-temporal clusters of residential burglary is well documented in empirical observations, and could be due to finite size effects anecdotally. However a theoretical understanding has been lacking. The existing agent-based statistical models of criminal behavior for residential burglary assume deterministic-time steps for arrivals of events. To incorporate random arrivals, this article introduces a Poisson clock into the model of residential burglaries, which could set time increments as independently exponentially distributed random variables. We apply the Poisson clock into the seminal deterministic-time-step model in Short et al. (Math Models Methods Appl Sci 18:1249–1267, 2008). Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 16 November 2023

    A correction has been published.

Notes

  1. 1.

    With minor changes we can also consider, e.g., the Dirichlet boundary conditions, which is more realistic.

  2. 2.

    More precisely, the criminal agents are assumed to be uniformly (randomly) distributed over the 128 × 128 grids, while \( \sum _{\mathbf {s}\in \mathcal S ^\ell } n0^\ell _{\mathbf {s}} = 128^2 \bar {n}^\ell \).

  3. 3.

    In [64], one can directly compute Γf and obtain that when f = Id then the infinitesimal variance comes up.

References

  1. D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, (2009).

    Google Scholar 

  2. G. J. Babu and E. D. Feigelson, Spatial point processes in astronomy, J. Statist. Plann. Inference, 50, 311–326, (2015).

    MathSciNet  MATH  Google Scholar 

  3. N. Bellomo, F. Colasuonno, D. Knopoff, and J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Netw. Het. Media, 10, 421–441, (2015).

    MathSciNet  MATH  Google Scholar 

  4. H. Berestycki, N. Rodríguez, and L. Ryzhik, Traveling wave solutions in a reaction-diffusion model for criminal activity, Multiscale Model. Simul., 11, 1097–1126, (2013).

    MathSciNet  MATH  Google Scholar 

  5. M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems, 25, paper n. 123006, 26 (2009).

    Google Scholar 

  6. K. Bichteler, Stochastic integration with jumps, Cambridge University Press, Cambridge, (2002).

    Google Scholar 

  7. D. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws of human travel, Nature, 439, 462–465, (2006).

    Google Scholar 

  8. T. Budd, Burglary of domestic dwellings: Findings from the British Crime Survey, Home Office Statistical Bulletin, Vol. 4 (Government Statistical Service, London, 1999).

    Google Scholar 

  9. L. Cao and M. Grabchak, Smoothly truncated levy walks: Toward a realistic mobility model, 2014 IEEE 33rd Int. Performance Computing and Communications Conference, (IPCCC), 5–7 December 2014, Austin, Texas, USA, pp. 1–8.

    Google Scholar 

  10. S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, and S. G. McCalla, Crime modeling with Lévy flights, SIAM J. Appl. Math., 73, 1703–1720, (2013).

    MathSciNet  MATH  Google Scholar 

  11. S. N. Chow, W. Li, and H. Zhou, Entropy dissipation of Fokker-Planck equations on graphs, Discrete Contin. Dyn. Syst., 38, 4929–4950, (2018).

    MathSciNet  MATH  Google Scholar 

  12. K. L. Chung and R. J. Williams, Introduction to stochastic integration, Birkhäuser/Springer, New York, (2014).

    Google Scholar 

  13. L. Citi, D. Ba, E. N. Brown, and R. Barbieri, Likelihood methods for point processes with refractoriness, Neural Comput., 26, 237–263, (2014).

    MathSciNet  MATH  Google Scholar 

  14. R. Durrett, Stochastic calculus, CRC Press, Boca Raton, FL, (1996).

    Google Scholar 

  15. R. Durrett, Essentials of stochastic processes, Springer-Verlag, New York, (1999).

    Google Scholar 

  16. R. Durrett, Probability models for DNA sequence evolution, Springer-Verlag, New York, (2002).

    Google Scholar 

  17. R. Durrett, Probability: theory and examples, Cambridge University Press, Cambridge, (2010).

    Google Scholar 

  18. P. Embrechts, R. Frey, and H. Furrer, Stochastic processes in insurance and finance, in Stochastic processes: theory and methods. North-Holland, Amsterdam, 365–412, (2001).

    Google Scholar 

  19. S. N. Ethier and T. G. Kurtz, Markov processes, John Wiley & Sons, Inc., New York, (1986).

    Google Scholar 

  20. M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal, 206, 997–1038, (2012) .

    MathSciNet  MATH  Google Scholar 

  21. M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355–1374, (2014).

    MathSciNet  MATH  Google Scholar 

  22. M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Probab., 26, 1774–1806, (2016).

    MathSciNet  MATH  Google Scholar 

  23. G. Farrell and K. Pease, Repeat Victimization, Criminal Justice Press, (2001).

    Google Scholar 

  24. T. Franco, Interacting particle systems: hydrodynamic limit versus high density limit, in From particle systems to partial differential equations. Springer, Heidelberg, 179–189, (2014).

    Google Scholar 

  25. J. M. Gau and T. C. Pratt, Revisiting broken windows theory: Examining the sources of the discriminant validity of perceived disorder and crime, J. Crim. Justice, 38, 758–766, (2010).

    Google Scholar 

  26. M. C. González, C. A. Hidalgo, and A.-L. Barabási, Understanding individual human mobility patterns, Nature, 453, 779–782, (2008).

    Google Scholar 

  27. I. J. Good, Some statistical applications of Poisson’s work, Statist. Sci., 1, 157–180, (1986).

    MathSciNet  MATH  Google Scholar 

  28. W. Gorr and Y. Lee, Early warning system for temporary crime hot spots, J. Quant. Criminol., 31, 25–47, (2015).

    Google Scholar 

  29. T. Goudon, B. Nkonga, M. Rascle, and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305, 1–22, (2015).

    Google Scholar 

  30. M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys., 118, 31–59, (1988).

    MathSciNet  MATH  Google Scholar 

  31. F. Hamba, Turbulent energy density in scale space for inhomogeneous turbulence, J. Fluid Mech., 842, 532–553, (2018).

    MathSciNet  MATH  Google Scholar 

  32. I. Hameduddin, C. Meneveau, T A. Zaki, and D. F. Gayme, Geometric decomposition of the conformation tensor in viscoelastic turbulence, J. Fluid Mech., 842, 395–427, (2018).

    Google Scholar 

  33. B. E. Harcourt, Reflecting on the subject: A critique of the social influence conception of deterrence, the broken windows theory, and order-maintenance policing New York style, Michigan Law Rev., 97, 291–389, (1998).

    Google Scholar 

  34. S. W. He, J. G. Wang, and J. A. Yan, Semimartingale theory and stochastic calculus, Kexue Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, (1992).

    Google Scholar 

  35. S. J. Illingworth, J. P. Monty, and I. Marusic, Estimating large-scale structures in wall turbulence using linear models, J. Fluid Mech., 842, 146–162, (2018).

    MathSciNet  MATH  Google Scholar 

  36. J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, (2003).

    Google Scholar 

  37. A. James, M. J. Plank, and A. M. Edwards, Assessing Lévy walks as models of animal foraging, J. R. Soc. Interface, 8, 1233–1247, (2011).

    Google Scholar 

  38. J. Jiménez, Coherent structures in wall-bounded turbulence, J. Fluid Mech., 842, P1, 100, (2018).

    Google Scholar 

  39. S. D. Johnson, W. Bernasco, K. J. Bowers, H. Elffers, J. Ratcliffe, G. Rengert, and M. Townsley, Space-time patterns of risk: A cross national assessment of residential burglary victimization, J. Quant. Criminol., 23, 201–219, (2007).

    Google Scholar 

  40. S. D. Johnson and K. J. Bowers, The stability of space-time clusters of burglary, Br. J. Criminol., 44, 55–65, (2004).

    Google Scholar 

  41. S. D. Johnson, K. Bowers, and A. Hirschfield, New insights into the spatial and temporal distribution of repeat victimization, Br. J. Criminol., 37, 224–241, (1997).

    Google Scholar 

  42. P. A. Jones, P. J. Brantingham, and L. R. Chayes, Statistical models of criminal behavior: the effects of law enforcement actions, Math. Models Methods Appl. Sci., 20, 1397–1423, (2010).

    MathSciNet  MATH  Google Scholar 

  43. S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1981).

    Google Scholar 

  44. C. Kipnis, and C. Landim, Scaling limits of interacting particle systems, Springer-Verlag, Berlin, (1999).

    Google Scholar 

  45. C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviation for simple exclusion processes, Comm. Pure Appl. Math., 42, 115–137, (1989).

    MathSciNet  MATH  Google Scholar 

  46. T. Kolokolnikov, M. J. Ward and J. Wei, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime, Discrete Contin. Dyn. Syst. Ser. B, 19, 1373–1410, (2014).

    MathSciNet  MATH  Google Scholar 

  47. T. M. Liggett, Lectures on stochastic flows and applications, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, (1986).

    Google Scholar 

  48. T. Levajković, H. Mena, and M. Zarfl, Lévy processes, subordinators and crime modeling, Novi Sad J. Math.46, 65–86, (2016).

    MathSciNet  MATH  Google Scholar 

  49. T. M. Liggett, Interacting Markov processes, in Biological growth and spread (Proc. Conf., Heidelberg, 1979). Springer, Berlin-New York, 145–156, (1980).

    Google Scholar 

  50. T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, (1985).

    Google Scholar 

  51. T. M. Liggett, Continuous time Markov processes, American Mathematical Society, Providence, RI, (2010).

    Google Scholar 

  52. D. J. B. Lloyd and H. O’Farrell, On localised hotspots of an urban crime model, Phys. D, 253, 23–39, (2013).

    MathSciNet  MATH  Google Scholar 

  53. R. N. Mantegna and H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett., 73, 2946–2949, (1994).

    MathSciNet  MATH  Google Scholar 

  54. M. C. Mariani and Y. Liu, Normalized truncated Levy walks applied to the study of financial indices, Physica A, Stat. Mech. Appl., 377, 590–598, (2007).

    Google Scholar 

  55. G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26, 1051–1093, (2016).

    MathSciNet  MATH  Google Scholar 

  56. A. Matacz, Financial modeling and option theory with the truncated Lévy process, Int. J. Theor. Appl. Financ., 3, 143–160, (2000).

    MathSciNet  MATH  Google Scholar 

  57. S. G. McCalla, M. B. Short, and P. J. Brantingham, The effects of sacred value networks within an evolutionary, adversarial game, J. Stat. Phys., 151, 673–688, (2013).

    MathSciNet  MATH  Google Scholar 

  58. M. Métivier, Semimartingales, Walter de Gruyter & Co., Berlin-New York, (1982).

    Google Scholar 

  59. M. Métivier and J. Pellaumail, Stochastic integration, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., (1980).

    Google Scholar 

  60. L. C. Miranda and R. Riera, Truncated Lévy walks and an emerging market economic index, Physica A, Stat. Mech. Appl., 297, 509–520, (2001) .

    MATH  Google Scholar 

  61. G. O. Mohler, M. B. Short, and P. J. Brantingham, The concentration-dynamics tradeoff in crime hot spotting, in Unraveling the Crime-Place Connection Vol. 22 (Routledge, 2017), pp. 19-40.

    Google Scholar 

  62. G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, Self-exciting point process modeling of crime, J. Am. Stat. Assoc., 106, 100–108, (2011) .

    MathSciNet  MATH  Google Scholar 

  63. G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J. Brantingham, Randomized controlled field trials of predictive policing, J. Am. Stat. Assoc., 110, 1399–1411, (2015) .

    MathSciNet  Google Scholar 

  64. J. Mourrat, A quantitative central limit theorem for the random walk among random conductance, Electron. J. Probab., 17, no. 97, 17, (2012).

    Google Scholar 

  65. H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26, 263–298, (1988).

    MathSciNet  MATH  Google Scholar 

  66. S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Cambridge University Press, Cambridge, (2007).

    Google Scholar 

  67. A. B. Pitcher, Adding police to a mathematical model of burglary, European J. Appl. Math., 21, 401–419, (2010).

    MathSciNet  MATH  Google Scholar 

  68. P. E. Protter, Stochastic integration and differential equations, Springer-Verlag, Berlin, (2005).

    Google Scholar 

  69. S. R. S. Varadhan, Entropy methods in hydrodynamic scaling, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, 196–208, (1995).

    Google Scholar 

  70. S. R. S. Varadhan, Lectures on hydrodynamic scaling, in Hydrodynamic limits and related topics (Toronto, ON, 1998). Amer. Math. Soc., Providence, RI, 3–40, (2000).

    Google Scholar 

  71. N. Rodríguez, On the global well-posedness theory for a class of PDE models for criminal activity, Phys. D, 260, 191–200, (2013) .

    MathSciNet  MATH  Google Scholar 

  72. N. Rodríguez and A. L. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, Math. Models Methods Appl. Sci., 20, 1425–1457, (2010).

    MathSciNet  MATH  Google Scholar 

  73. M. B. Short, A. L. Bertozzi, and P. J. Brantingham, Nonlinear patterns in urban crime: hotspots, bifurcations, and suppression, SIAM J. Appl. Dyn. Syst., 9, 462–483, (2010).

    MathSciNet  MATH  Google Scholar 

  74. M. B. Short, P. J. Brantingham, A. L. Bertozzi, and G. E. Tita, Dissipation and displacement of hotspots in reaction-diffusion models of crime, Proc. Natl. Acad. Sci., 107, 3961–3965, (2010).

    Google Scholar 

  75. M. B. Short, M. R. D’Orsogna, P. J. Brantingham, and G. E. Tita, Measuring and modeling repeat and near-repeat burglary effects, J. Quant. Criminol., 25, 325–339, (2009).

    Google Scholar 

  76. M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1249–1267, (2008).

    MathSciNet  MATH  Google Scholar 

  77. M. B. Short, G. O. Mohler, P. J. Brantingham, and G. E. Tita, Gang rivalry dynamics via coupled point process networks, Discrete Contin. Dyn. Syst. Ser. B, 19, 1459–1477, (2014).

    MathSciNet  MATH  Google Scholar 

  78. B. Snook, Individual differences in distance travelled by serial burglars, J. Investig. Psych. Offender Profil.1, 53–66, (2004).

    Google Scholar 

  79. D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, (2006).

    Google Scholar 

  80. B. Tóth and B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys., 112, 497–521, (2003).

    MathSciNet  MATH  Google Scholar 

  81. W. H. Tse and M. J. Ward, Hotspot formation and dynamics for a continuum model of urban crime, European J. Appl. Math.27, 583–624, (2016).

    MathSciNet  MATH  Google Scholar 

  82. P. J. van Koppen and R. W. J. Jansen, The road to the robbery: Travel patterns in commercial robberies, Brit. J. Criminol.38, 230–246, (1998).

    Google Scholar 

  83. J. Q. Wilson and G. L. Kelling, Broken windows: The police and neighborhood safety, Atlantic Mon.249, 29–38, (1982).

    Google Scholar 

  84. J. R. Zipkin, M. B. Short, and A. L. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response, Discrete Contin. Dyn. Syst. Ser. B19, 1479–1506, (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the helpful discussions with Prof. A. Debussche, Prof. Andrea Montanari, Prof. Thomas Liggett, Prof. Carl Mueller, Prof. Wotao Yin, Mac Jugal Nankep Nguepedja, Da Kuang, Yifan Chen, Fangbo Zhang, Yu Gu, Jingyu Huang, Yatin Chow, Wuchen Li, and Kenneth Van. A. Bertozzi is supported by NSF grant DMS-1737770 and M. Short is supported by NSF grant DMS-1737925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuntian Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

To prove Theorem 2.1, we compute the infinitesimal means and variances of \( \left < \left (B^{\ell }( t), n^{ \ell }(t)\right ), \phi ^{ \ell } \right >\) for fixed [1, 12, 16, 34, 36, 43, 47, 58, 59, 66, 68].

We first study related random variables. We assume that the Poisson-clock advances at t, and analyze the transition at time t. Conditioned on (B(s, t), n(s, t)), we observe that \(E^\ell _{\mathbf {s}}(t)\), \(\mathbf {s} \in \mathcal S\), is a family of independently identically distributed Binomial random variables with the parameters n(s, t) and p(s, t), that is

$$\displaystyle \begin{aligned}\displaystyle \mathbb P \left(E^\ell_{\mathbf{s}}(t) = i \middle | B^\ell_{\mathbf{s}} ( t^-) , n^\ell _{\mathbf{s}} ( t^-) \right )= {n^\ell_{\mathbf{s}} (t^-)\choose i } \left ( p^\ell_{\mathbf{s}}(t^-) \right ) ^ i (1- p^\ell_{\mathbf{s}}(t^-) )^{n_{\mathbf{s}}^\ell (t^-)- i},\end{aligned} $$
(42)

where \(i =0, 1, 2, \ldots , n^\ell _{\mathbf {s}}(t^-).\) Hence we have

$$\displaystyle \begin{aligned} &\mathbb E \left[E^\ell_{\mathbf{s}}(t) \middle | B^\ell_{\mathbf{s}} (t^-), n^\ell _{\mathbf{s}} (t^-) \right ]= p^\ell_{\mathbf{s}}(t^-) n^\ell _{\mathbf{s}} (t^-), {} \end{aligned} $$
(43)
$$\displaystyle \begin{aligned} &\mbox{Var} \left(E^\ell_{\mathbf{s}} (t)\middle | \left ( B^\ell _{\mathbf{s}} (t^-) , n^\ell_{\mathbf{s}} (t^-) \right) , \forall \mathbf{s} \in \mathcal S\right) = n ^\ell_{\mathbf{s}} (t^-) p ^\ell_{\mathbf{s}} (t^-) \left [1 - p ^\ell_{\mathbf{s}} (t^-)\right]. {}\end{aligned} $$
(44)

Let \(J^\ell _{\mathbf {s}, j}(t)\), \(j=1, 2, ..., n^\ell _{\mathbf {s}}(t^-)\) be a family of independently distributed Bernoulli random variables assuming 1 with probability \(1-p^\ell _{\mathbf {s}}(t^-)\). If the j-th agent at site s chooses not to burglarize, then \(J^\ell _{\mathbf {s}, j}(t)\) assumes 1. This implies that

(45)

We also note that by our construction \(E ^{\ell }_{\mathbf {s}} (t) = \sum _{j =1} ^{j=n^\ell _{\mathbf {s}} (t^-)} \left (1-J^\ell _{\mathbf {s}, j} (t) \right )\).

Let \(\varPhi ^\ell _{\mathbf {s}, j}(t)\), \(j= 1, \ldots , n^\ell _{\mathbf {s}} (t^-)\) be a family of independently identically distributed random variables assuming \(\phi _{{\mathbf {s}}^\prime }\) with probability \({A^\ell _{{\mathbf {s}}^\prime }}/{T^\ell _{\mathbf {s}}}\), for every s, s ∼s. Then we have

$$\displaystyle \begin{aligned} \mathbb E \left [ \varPhi^\ell_{\mathbf{s}, j}(t) \middle| \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ), \forall \mathbf{s} \in \mathcal S ^\ell \right ] =\sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi^\ell _{{\mathbf{s}}^\prime} \frac{A^\ell_{{\mathbf{s}}^\prime} (t^-) }{T^\ell_{\mathbf{s}} (t^-)},\end{aligned} $$
(46)
$$\displaystyle \begin{aligned}\mathbb E \left [ \left (\varPhi^\ell_{\mathbf{s}, j}(t)\right)^2 \middle| \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ), \forall \mathbf{s} \in \mathcal S ^\ell \right ] = \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \left(\phi^\ell _{{\mathbf{s}}^\prime}\right)^2 \frac{A^\ell_{{\mathbf{s}}^\prime} (t^-)}{T^\ell_{\mathbf{s}} (t^-)}. \end{aligned} $$
(47)

Let the number of replaced criminals on site s at time t be \(\xi ^\ell _{\mathbf {s}}(t)\). Then \(\xi ^\ell _{\mathbf {s}}(t)\) is a family of Bernoulli random variables assuming 1 with probability Γℓ2D. Hence we have

$$\displaystyle \begin{aligned} \mathbb E \left [ \xi^\ell_{\mathbf{s}}(t) \middle| \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ) \right ] = \frac{{\varGamma} \ell ^2} {D}, \end{aligned} $$
(48)
$$\displaystyle \begin{aligned} \mbox{Var} \left( \left (\xi^\ell_{\mathbf{s}}(t) \right) ^2 \middle| \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ) \right ) = \frac{{\varGamma} \ell ^2 }{D} (1-\frac{ {\varGamma} \ell ^2 }{D}). \end{aligned} $$
(49)

Because the decision to burglarize is (conditionally) independent from the decision to move for each of the burglars, \(J^\ell _{\mathbf {s}, j}(t)\) and \(\varPhi ^\ell _{\mathbf {k}, h}(t)\) are (conditionally) independent for any choices of s, k, j, and h. This implies that

(50)
$$\displaystyle \begin{aligned} & \mbox{Var} \left (J^\ell_{\mathbf{s}, j}(t) \varPhi^\ell_{\mathbf{s}, j}(t) \middle | \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ) , \forall \mathbf{s}\in \mathcal S ^\ell \right ) \notag\\ & = \mathbb E\left [\left (J^\ell_{\mathbf{s}, j}(t) \varPhi^\ell_{\mathbf{s}, j}(t) \right )^2 \middle | \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ) , \forall \mathbf{s}\in \mathcal S ^\ell \right] \notag \\ &\quad - \left [ \mathbb E \left[J^\ell_{\mathbf{s}, j}(t) \varPhi^\ell_{\mathbf{s}, j}(t) \middle | \left ( B^\ell_{\mathbf{s}} (t^-), n^\ell_{\mathbf{s}} (t^{-} )\right ) , \forall \mathbf{s}\in \mathcal S ^\ell \right ] \right]^2 \notag\\ &= \mbox{(by (A.4), (A.5), (A.6), and (A.4))} \notag\\ &= \left[1-p^\ell_{\mathbf{s}}(t^-) \right] \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \left(\phi^\ell _{{\mathbf{s}}^\prime} \right)^2 \frac{A^\ell_{{\mathbf{s}}^\prime}(t^{-} ) }{T^\ell_{\mathbf{s} } (t^{-} )} -\left [1-p^\ell_{\mathbf{s}}(t^-) \right] ^2 \left [\sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi^\ell _{{\mathbf{s}}^\prime} \frac{A^\ell_{{\mathbf{s}}^\prime}(t^{-} ) }{T^\ell_{\mathbf{s} } (t^{-} ) } \right]^2,{} \end{aligned} $$
(51)

Right after the Poisson clock advances we have the following transition:

$$\displaystyle \begin{aligned} \sum_{\mathbf{s} \in \mathcal S ^\ell} n^\ell_{\mathbf{s}} (t)\phi ^{\ell}_{\mathbf{s}} & = \sum_{\mathbf{s} \in \mathcal S ^\ell} \sum_{j=1} ^{n^\ell_{\mathbf{s} }(t^-)} \left [1- J^\ell _{\mathbf{s}, j}(t)\right ] \varPhi^\ell_{\mathbf{s}, j} (t)+ \sum_{\mathbf{s} \in \mathcal S ^\ell} \xi ^\ell _{\mathbf{s}} (t) \phi ^\ell _{\mathbf{s}}. {} \end{aligned} $$
(52)

With the above random variables we compute the infinitesimal means and variances. In the computational steps we will drop the superscript for simplicity.

We compute the infinitesimal mean for \(\left < B^{\ell }(t^-), \phi ^{\ell } \right > \). From (6) we have

$$\displaystyle \begin{aligned}\displaystyle &\mathcal{G} _1 \left ( \left< B ^\ell (t^-), \phi ^{\ell} \right>, \left< n^\ell (t^-) , \phi ^{\ell} \right> \right) \notag\\ &=\frac{{D}}{\ell ^{2} } \mathbb E \left [ \ell^2 \sum _{\mathbf{s} \in \mathcal{S } } \left [ B_{\mathbf{s}} (t)- B_{\mathbf{s}} (t^-)\right ] \phi _{\mathbf{s}} \middle| (B (t^-), n (t^-)) \right ]\notag\\ &=\mbox{by (A.2)} \notag \\ &= {{D}} \sum _{\mathbf{s} \in \mathcal{S} } \left [ \left (1 - \frac{\omega \ell^2}{{D}} \right)\frac{\eta \ell ^2}{4} \varDelta B_{\mathbf{s}}(t^-) - \frac{\omega \ell^2}{{D}} B_{\mathbf{s}} (t^-) + \theta p _{\mathbf{s}}(t^-) n _{\mathbf{s}} (t^-) \right ] \phi _{\mathbf{s}} , {} \end{aligned} $$
(53)

which implies (11).

We compute the infinitesimal variance of \(\left < B^{\ell } (t^-), \phi ^{\ell } \right >\):

$$\displaystyle \begin{aligned} &\mathcal{V}^\ell_1 \left (\left< \left (B^{\ell}( t), n^{ \ell}(t)\right), \, \phi^{ \ell} \right>\right ) \notag\\ & = \lim_{\delta t \rightarrow 0} \frac{1}{\delta t}{\mathbb E \left [ \left ( \left< B (\delta t+ t^-), \phi \right> -\left< B (t^-), \phi \right> \right) ^2 \middle | (B (t^-), n (t^-)) \right ] } \notag \\ &=\frac{D}{\ell ^{2}} \mathbb E \left [ \ell^4 \left (\sum_{\mathbf{s} \in \mathcal S } B _{\mathbf{s}} (t^-)\phi _{\mathbf{s}} - \sum_{\mathbf{s} \in \mathcal S } B _{\mathbf{s}} (t) \phi _{\mathbf{s}} \right )^2 \middle| \left ( B (t^-), n (t^{-}) \right ) \right ]\notag \\ &={D}\ell ^{ 2} \mathbb E \left [ \sum_{\mathbf{s} \in \mathcal S } B _{\mathbf{s}} (t^-)\phi _{\mathbf{s}} - \sum_{\mathbf{s} \in \mathcal S } B _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ]^2 \notag \\ &\quad \quad + {D}\ell ^{ 2} \mbox{Var} \left [ \sum_{\mathbf{s} \in \mathcal S } B_{\mathbf{s}} (t^-)\phi _{\mathbf{s}} - \sum_{\mathbf{s} \in \mathcal S } B _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ] \notag \\ & := J_1+J_2 . {} \end{aligned} $$
(54)

For J1, from (53) we have

$$\displaystyle \begin{aligned} J_1 &= \frac{ \ell ^{2} }{D} \mathcal{G} _1^2 \left ( \left< B (t^-), \phi \right>, \left< n (t^-) , \phi \right> \right) . \end{aligned} $$
(55)

Then for J2, we apply the independence of Es(t) for distinct \(\mathbf {s} \in \mathcal S\) and with (44) we obtain

(56)

This together with (55) and (54) implies (13).

We compute the infinitesimal mean for \(\left < n^{\ell }( t^-), \phi ^{ \ell } \right > \). From (52) we have

$$\displaystyle \begin{aligned} &\mathcal{G} _2 \left ( \left< \left (B ^{\ell} (t^-), n^{\ell} (t^-)\right) , \phi^{\ell} \right> \right) \notag\\ & =\frac{D}{\ell ^{ 2}} \mathbb E \left [ \ell^2 \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t)\phi _{\mathbf{s}} - \ell^2\sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| (B (t^-), n (t^-)) \right ] \notag\\ & = {D} \sum_{\mathbf{s} \in \mathcal S } \mathbb E \left [\sum_{j=1} ^{n _{\mathbf{s} }(t^-)} \left [1- J _{\mathbf{s}, j} (t)\right ] \varPhi_{\mathbf{s}, j} (t) + \xi _{\mathbf{s}} (t) \phi _{\mathbf{s}} - n _{\mathbf{s}} (t^-) \phi _{\mathbf{s}} \middle| (B (t^-), n (t^-)) \right ] .{} \end{aligned} $$
(57)

This together with (45), (46), and (48) implies

$$\displaystyle \begin{aligned} &\mathcal{G} _2 \left ( \left< \left (B ^{\ell} (t^-), n ^{\ell}(t^-)\right) , \phi ^{\ell} \right> \right) \notag \\ & = {D} \sum_{\mathbf{s} \in \mathcal S } \left [ n _{\mathbf{s}} (t^-) \left [ 1 - p _{\mathbf{s}}(t) \right] \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi _{{\mathbf{s}}^\prime} \frac{A _{{\mathbf{s}}^\prime}(t^-)}{T _{\mathbf{s}}(t^-) }+ \frac{{\varGamma} \ell^2}{{D}} \phi _{\mathbf{s}} - n _{\mathbf{s}} (t^-) \phi _{\mathbf{s}}\right] \notag\\ & = {D} \sum_{\mathbf{s} \in \mathcal S } \left[ \phi _{\mathbf{s}} A _{\mathbf{s}}(t^-) \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \frac{n _{{\mathbf{s}}^\prime} (t^-) \left [ 1 - p _{{\mathbf{s}}^\prime }(t) \right] } {T _{{\mathbf{s}}^\prime }(t^-) }+ \frac{{\varGamma} \ell^2}{{D}} \phi _{\mathbf{s}} - n _{\mathbf{s}} (t^-) \phi _{\mathbf{s}}\right], {} \end{aligned} $$
(58)

which implies (12).

We compute the infinitesimal variance of \(\left < n^{\ell } (t^-), \phi ^{\ell } \right >\)

$$\displaystyle \begin{aligned} &\mathcal{V}^\ell_2 \left (\left< \left (B^{\ell}( t), n^{ \ell}(t)\right), \, \phi^{ \ell} \right>\right ) \notag \\ &= \lim_{\delta t \rightarrow 0} \frac{1}{\delta t}{\mathbb E \left [ \left ( \left< n (\delta t+t^-), \phi \right> -\left< n (t^-), \phi \right> \right) ^2 \middle | (B (t^-), n (t^-)) \right ] } \notag \\ &={D}\ell ^{ 2} \mathbb E \left [ \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t^-)\phi _{\mathbf{s}} - \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ]^2 \notag \\ &\quad \quad \quad + {D}\ell ^{ 2} \mbox{Var} \left ( \sum_{\mathbf{s} \in \mathcal S } n_{\mathbf{s}} (t^-)\phi _{\mathbf{s}} - \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ) \notag \\ &:=J_3 + J_4. {} \end{aligned} $$
(59)

For J3 we have

$$\displaystyle \begin{aligned} J_3= \frac{\ell^2}{D} \mathcal{G} _2 ^2 \left ( \left< B (t^-), \phi \right>, \left< n (t^-) , \phi \right> \right) . \end{aligned} $$
(60)

For J4, with the independence of the related random variables, we obtain

$$\displaystyle \begin{aligned} J_4 &= {D}\ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } \mbox{Var} \left ( \sum_{j=1} ^{n _{\mathbf{s} }(t^-)} J _{\mathbf{s}, j} \varPhi_{\mathbf{s}, j}(t) + \xi _{\mathbf{s}} (t) \phi _{\mathbf{s}} - n _{\mathbf{s}} (t^-) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ) \notag \\ &= D \ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } \mbox{Var} \left (\xi _{\mathbf{s}} (t) \phi _{\mathbf{s}} \middle| \left ( B (t^-), n (t^{-}) \right ) \right ) \notag \\ & \quad +D \ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } {n _{\mathbf{s} }(t^-)} \mbox{Var} \left ( J _{\mathbf{s}, j} (t)\varPhi_{\mathbf{s}, j}(t) \middle| \left ( B (t^-), n (t^{-}) \right ) \right ) \notag \\ & := J_{4, 1} + J_{4, 2} . {} \end{aligned} $$
(61)

For J4,1, by (49) we have

$$\displaystyle \begin{aligned} J_{4, 1}= \ell^{ 4} {{\varGamma} } \left(1- \frac{{\varGamma} \ell^2}{{D}}\right) \sum_{\mathbf{s} \in \mathcal S } \phi ^2 _{\mathbf{s}} . \end{aligned} $$
(62)

For J4,2, by (50) and (51) we have

$$\displaystyle \begin{aligned} J_{4, 2} & = {D}\ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t^-) p_{\mathbf{s}}(t^-) \left [1-p _{\mathbf{s}}(t^-) \right ] \left [ \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi _{{\mathbf{s}}^\prime} \frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}} (t^-)} \right] ^2 \notag \\ & \quad + {D}\ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t^-) \left [ 1-p _{\mathbf{s}}(t^-) \right ] \left [ \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi^2 _{{\mathbf{s}}^\prime}\frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}}(t^-)}- \left ( \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi _{{\mathbf{s}}^\prime} \frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}} (t^-)} \right) ^2 \right] \notag \\ & := J_{4, 1,1} + J_{4, 1, 2} . {} \end{aligned} $$
(63)

We simplify J4,1,2 as follows

$$\displaystyle \begin{aligned} J_{4, 1, 2} &= {D}\ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t^-) \left [ 1-p _{\mathbf{s}}(t^-)) \right ] \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}}(t^-)} \left [\phi _{{\mathbf{s}}^\prime} - \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \phi _{{\mathbf{s}}^\prime} \frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}} (t^-)} \right]^2 \notag \\ &= {D}\ell ^{ 2} \sum_{\mathbf{s} \in \mathcal S } n _{\mathbf{s}} (t^-) \left [ 1-p _{\mathbf{s}}(t^-) \right] \sum_{\substack{{\mathbf{s}}^\prime \\ {\mathbf{s}}^\prime \sim \mathbf{s}} } \frac{A_{{\mathbf{s}}^\prime}(t^-)}{T_{\mathbf{s}}(t^-)} \left [\sum_{\substack{{\mathbf{s}}^{\prime \prime} \\ {\mathbf{s}}^{\prime\prime} \neq {\mathbf{s}}^\prime \\ {\mathbf{s}}^{\prime \prime}\sim \mathbf{s} } } \left (\phi _{{\mathbf{s}}^\prime} - \phi _{{\mathbf{s}}^{\prime \prime}} \right)\frac{A_{{\mathbf{s}}^{\prime \prime}}(t^-)}{T_{\mathbf{s}} (t^-)} \right]^2 . {} \end{aligned} $$
(64)

This together with (59)–(63) implies (14).

With the infinitesimal means and variances we apply Theorem (1.6), [14] or Theorem 3.32, [51], to arrive at (9), and apply Exercise 3.8.12 of [6], Lemma A 1.5.1, [44], or Proposition B.1 in [64]Footnote 3 to obtain (10). To conclude the proof of Theorem 2.1 is completed.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, C., Zhang, Y., Bertozzi, A.L., Short, M.B. (2019). A Stochastic-Statistical Residential Burglary Model with Finite Size Effects. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-20297-2_8

Download citation

Publish with us

Policies and ethics